Biophysicists construct complex hybrid structures using DNA and proteins - Designer proteins fold DNA


TUM-IAS Carl von Linde Senior Fellow Prof. Hendrik Dietz and Florian Praetorius of the Technical University of Munich (TUM) have developed a new method that can be used to construct custom hybrid structures using DNA and proteins. The method opens new opportunities for fundamental research in cell biology and for applications in biotechnology and medicine.

Desoxyribonucleic acid, better known by its abbreviation DNA, carries our genetic information. But to Prof. Hendrik Dietz and Florian Praetorius from TUM, DNA is also an excellent building material for nanostructures. Folding DNA to create three-dimensional shapes using a technique known as "DNA origami" is a long-established method in this context. But there are limits to this approach, explains Dietz. The "construction work" always takes place outside of biological systems and many components must be chemically synthesized. "Creating user-defined structures in sizes on the order of 10 to 100 nanometers inside a cell remains a great challenge," he adds. Their newly developed technique now allows the researchers to use proteins to fold double-stranded DNA into desired three-dimensional shapes. Here, both the DNA and the required proteins can be genetically encoded and produced inside cells.

A full press release can be found here.