Learning latent low-dimensional functions with neural networks

Theodor Misiakiewicz

Stanford University

Joint work with Emmanuel Abbe (EPFL) and Enric Boix-Adsera (MIT)

April 24th, 2023
Workshop on Optimal Transport, Mean-Field Models, and Machine Learning, TUM Institute for Advanced Study (Munich)

Curse of dimensionality

Two observations:

- Deep Learning routinely solve high-dimensional problems.
- Curse of dimensionality: $\mathcal{H}=1$-bounded 1 -Lipschitz functions on $[0,1]^{d}$, With M neurons [Maiorov,'99] and n samples

$$
\text { Approx. error } \asymp M^{-\Theta(1 / d)}, \quad \text { Gen. error } \asymp n^{-\Theta(1 / d)}
$$

Why does DL seemingly avoid the curse of dimensionality?

Conjecture:

Real data has low-dimensional structure. NNs can adapt to it and break the CoD.

Simplest example: latent low-dimensional ("multi-index") functions, i.e., that depend on a latent (unknown) low-dimensional subspace.

There exist P directions $\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{P}\right)$ with $P \ll d$ such that

$$
f_{*}(\boldsymbol{x})=h_{*}\left(\left\langle\boldsymbol{u}_{1}, \boldsymbol{x}\right\rangle, \ldots,\left\langle\boldsymbol{u}_{P}, \boldsymbol{x}\right\rangle\right) .
$$

- $\mathcal{H}_{P}=\{$ functions in \mathcal{H} that depend on P-coordinates $\}$
[Bach,'17], [Schmidt-Hieber,'20], etc...

$$
\text { Approx. error } \asymp M^{-\Theta(1 / P)}, \quad \text { Gen. error } \asymp n^{-\Theta(1 / P)} \text {. }
$$

Intuition: ERM with $M=\infty+$ sparsity inducing norm, $\sigma\left(\left\langle\boldsymbol{w}_{j}, \boldsymbol{x}\right\rangle\right)$ with \boldsymbol{w}_{j} aligned with the P-dimensional support.

NNs can break the CoD on multi-index fcts in approx./gen.

- However, these results do not provide efficient algorithms (only hold with unbounded computational resources).

This is unavoidable, because of computational hardness results. [Klivans, Sherstov, '09], [Neyshabur, Tomokia, Srerbro, '15]

We expect some multi-index functions to be easier/harder to learn, which will not be captured by studying approximation and generalization alone.

Goal of this talk

Which multi-index functions are efficiently learned by NNs trained using SGD?

- Need to study the SGD training dynamics.
- Understand how SGD dynamically picks up the low-dimensional support.

Setting

- Toy data distribution: $\boldsymbol{x} \sim \operatorname{Unif}\left(\{+1,-1\}^{d}\right)$ and sparse target function

$$
f_{*}(\boldsymbol{x})=h_{*}(\boldsymbol{z}), \quad \boldsymbol{z} \in\{ \pm 1\}^{P} \text { unknown subset of } P \text { coordinates of } \boldsymbol{x}, P \ll d
$$

- 2-layer neural network with M neurons:

$$
\hat{f}_{\mathrm{NN}}(\boldsymbol{x} ; \boldsymbol{\Theta})=\frac{1}{M} \sum_{j \in[M]} a_{j} \sigma\left(\left\langle\boldsymbol{w}_{j}, \boldsymbol{x}\right\rangle\right), \quad \boldsymbol{\Theta}=\left(\boldsymbol{\theta}_{j}\right)_{j \in[M]}=\left(a_{j}, \boldsymbol{w}_{j}\right)_{j \in[M]}
$$

- Goal: fit the target function f_{*} by minimizing

$$
\min _{\boldsymbol{\Theta}} R\left(f_{*}, \boldsymbol{\Theta}\right)=\mathbb{E}_{\boldsymbol{x}}\left[\left(f_{*}(\boldsymbol{x})-\hat{f}_{\mathrm{NN}}(\boldsymbol{x} ; \boldsymbol{\Theta})\right)^{2}\right]
$$

- Online (one-pass) SGD: initialization $\left(a_{j}, \boldsymbol{w}_{j}\right)_{j \in[M]} \sim_{\text {iid }} \rho_{0}$.

Update: at each step k, fresh sample $\left(\boldsymbol{x}_{k}, y_{k}\right)$ with $y_{k}=f_{*}\left(\boldsymbol{x}_{k}\right)+\varepsilon_{k}$,

$$
\boldsymbol{\theta}_{j}^{k+1}=\boldsymbol{\theta}_{j}^{k}+\eta\left(y_{k}-\hat{f}_{\mathrm{NN}}\left(\boldsymbol{x}_{k} ; \boldsymbol{\Theta}^{k}\right)\right) \cdot \nabla_{\boldsymbol{\theta}_{j}}\left\{a_{j} \sigma\left(\left\langle\boldsymbol{x}_{k}, \boldsymbol{w}_{j}^{k}\right\rangle\right)\right\} .
$$

(sample complexity $n=$ number of SGD steps T)

Motivating examples

$$
h_{*, 1}(z)=z_{1}+z_{1} z_{2}+z_{1} z_{2} z_{3}, \quad h_{*, 2}(z)=z_{1} z_{2} z_{3}
$$

Are these 2 functions equivalent for SGD-trained NNs? If not, which one is easier to learn?
$T=$ number of SGD steps to reach 0.05 test error.

$$
\underbrace{h_{*, 1}(\boldsymbol{z})=z_{1}+z_{1} z_{2}+z_{1} z_{2} z_{3}}_{T=n=\Theta(d) \text { SGD steps to learn }}, \quad \underbrace{h_{*, 2}(\boldsymbol{z})=z_{1} z_{2} z_{3}}_{\text {needs } T=n=\widetilde{\Theta}\left(d^{2}\right) \text { steps }} .
$$

(1) Which functions are learned in $\Theta(d)$ SGD steps?

We need to study the dynamics:

$$
\boldsymbol{\theta}_{j}^{k+1}=\boldsymbol{\theta}_{j}^{k}+\eta\left(y_{k}-\hat{f}_{\mathrm{NN}}\left(\boldsymbol{x}_{k} ; \boldsymbol{\Theta}^{k}\right)\right) \cdot \nabla_{\boldsymbol{\theta}_{j}}\left\{a_{j} \sigma\left(\left\langle\boldsymbol{x}_{k}, \boldsymbol{w}_{j}^{k}\right\rangle\right)\right\},
$$

$$
\hat{f}_{\mathrm{NN}}\left(\boldsymbol{x} ; \boldsymbol{\Theta}^{k}\right)=\frac{1}{M} \sum_{j \in[M]} a_{j}^{k} \sigma\left(\left\langle\boldsymbol{w}_{j}^{k}, \boldsymbol{x}\right\rangle\right), \quad \boldsymbol{\Theta}^{k}=\left(\boldsymbol{\theta}_{j}^{k}\right)_{j \in[M]}=\left(a_{j}^{k}, \boldsymbol{w}_{j}^{k}\right)_{j \in[M]}
$$

Two approximations:
(1) Mean-field approximation $M \rightarrow \infty, \eta \rightarrow 0$.

2 Ambient dimension $d \rightarrow \infty$.

1) Mean-field approximation

[Mei et al,'18], [Chizat,Bach,'18], [Rotskoff,Vanden-Eijnden,'18], [Sirignano,Spiliopoulos,'18]

- $M \rightarrow \infty$ limit: $\left(\boldsymbol{\theta}_{j}\right)_{j \in[M]}$ replaced by $\rho \in \mathcal{P}\left(\mathbb{R}^{d+1}\right)$

$$
\hat{f}_{\mathrm{NN}}(\boldsymbol{x} ; \boldsymbol{\Theta})=\frac{1}{M} \sum_{j \in[M]} a_{j} \sigma\left(\left\langle\boldsymbol{w}_{j}, \boldsymbol{x}\right\rangle\right), \quad \longrightarrow \quad \hat{f}_{\mathrm{NN}}(\boldsymbol{x} ; \rho)=\int a \sigma(\langle\boldsymbol{w}, \boldsymbol{x}\rangle) \rho(\mathrm{d} \boldsymbol{\theta}) .
$$

- $\eta \rightarrow 0$ limit: gradient flow on the population loss, $\left(\rho_{t}\right)_{t \geq 0}$ solution of PDE with:

$$
\boldsymbol{\theta}^{t} \sim \rho_{t}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{\theta}^{t}=\mathbb{E}_{\boldsymbol{x}}\left[\left(f_{*}(\boldsymbol{x})-\hat{f}_{\mathrm{NN}}\left(\boldsymbol{x} ; \rho_{t}\right)\right) \nabla_{\boldsymbol{\theta}}\left\{a^{t} \sigma\left(\left\langle\boldsymbol{w}^{t}, \boldsymbol{x}\right\rangle\right)\right\}\right] .
$$

MF dynamics $=$ gradient flow on population loss with $M=\infty$.

- [Mei, M., Montanari,'19] with probability at least $1-1 / M$:

$$
\sup _{k \in\{0, \ldots, T\}}\left\|\hat{f}_{\mathrm{NN}}\left(\cdot ; \Theta^{k}\right)-\hat{f}_{\mathrm{NN}}\left(\cdot ; \rho_{k \eta}\right)\right\|_{L^{2}} \leq K e^{K(\eta T)^{3}}[\underbrace{\sqrt{\frac{\log (M)}{M}}}_{M \rightarrow \infty}+\underbrace{\sqrt{d \eta}}_{\eta \rightarrow 0}]
$$

(2) Ambient dimension $d \rightarrow \infty$

Use the symmetry of the problem to show that MF dynamics is well approximated by a low-dim dynamics as $d \rightarrow \infty$ (with h_{*}, P fixed).
$>\boldsymbol{x} \sim \operatorname{Unif}\left(\{+1,-1\}^{d}\right)$ and $\boldsymbol{x}=(\boldsymbol{z}, \boldsymbol{r}), \boldsymbol{z} \in \mathbb{R}^{P}, \boldsymbol{r} \in \mathbb{R}^{d-P}, f_{*}(\boldsymbol{x})=h_{*}(\boldsymbol{z})$,
First layer weights: $\boldsymbol{w}^{t}=\left(\boldsymbol{u}^{t}, \boldsymbol{v}^{t}\right), \boldsymbol{u}^{t} \in \mathbb{R}^{P}$ and $\boldsymbol{v}^{t} \in \mathbb{R}^{d-P}$.
For $\boldsymbol{w}^{0} \sim \mathrm{~N}\left(0, \kappa^{2} \mathbf{I}_{d} / d\right)$:

$$
\begin{gathered}
\hat{f}_{\mathrm{NN}}\left(\boldsymbol{x} ; \rho_{0}\right)=\int a^{0} \sigma\left(\left\langle\boldsymbol{u}^{0}, \boldsymbol{z}\right\rangle+\left\langle\boldsymbol{v}^{0}, \boldsymbol{r}\right\rangle\right) \rho_{0}\left(\mathrm{~d} \boldsymbol{\theta}^{t}\right)=\int a^{0} \sigma\left(\left\langle\boldsymbol{u}^{0}, \boldsymbol{z}\right\rangle+\left\langle\boldsymbol{v}^{0}, \mathbf{1}\right\rangle\right) \rho_{0}\left(\mathrm{~d} \boldsymbol{\theta}^{t}\right) \\
\Longrightarrow \quad \hat{f}_{\mathrm{NN}}\left(\boldsymbol{z} ; \rho_{t}\right)=\mathbb{E}_{\boldsymbol{r}}\left[\hat{f}_{\mathrm{NN}}\left(\boldsymbol{x} ; \rho_{t}\right)\right]=\int a^{t} \mathbb{E}_{\boldsymbol{r}}\left[\sigma\left(\left\langle\boldsymbol{u}^{t}, \boldsymbol{z}\right\rangle+\left\langle\boldsymbol{v}^{t}, \boldsymbol{r}\right\rangle\right)\right] \rho_{t}\left(\mathrm{~d} \boldsymbol{\theta}^{t}\right)
\end{gathered}
$$

- As $d \rightarrow \infty$,

$$
\mathbb{E}_{\boldsymbol{r}}\left[\sigma\left(\left\langle\boldsymbol{u}^{t}, \boldsymbol{z}\right\rangle+\left\langle\boldsymbol{v}^{t}, \boldsymbol{r}\right\rangle\right)\right] \rightarrow \mathbb{E}_{G}\left[\sigma\left(\left\langle\boldsymbol{u}^{t}, \boldsymbol{z}\right\rangle+\left\|\boldsymbol{v}^{t}\right\|_{2} G\right)\right]=: \sigma_{\left\|\boldsymbol{v}^{t}\right\|_{2}}\left(\left\langle\boldsymbol{u}^{t}, \boldsymbol{z}\right\rangle\right),
$$

and $\boldsymbol{u}^{0} \rightarrow 0,\left\|\boldsymbol{v}^{0}\right\| \rightarrow \kappa$.

Dimension-free dynamics

\checkmark As $d \rightarrow \infty,\left(a^{t}, \boldsymbol{u}^{t}, \boldsymbol{v}^{t}\right) \sim \rho_{t}$ approximated by $\overline{\boldsymbol{\theta}}^{t}:=\left(\bar{a}^{t}, \overline{\boldsymbol{u}}^{t}, \bar{s}^{t}\right) \sim \bar{\rho}_{t} \in \mathcal{P}\left(\mathbb{R}^{P+2}\right)$
$\bar{\rho}_{t}$ follows a dimension free dynamics (DF-PDE):

$$
\begin{gathered}
\overline{\boldsymbol{\theta}}^{t} \sim \bar{\rho}_{t}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \overline{\boldsymbol{\theta}}^{t}=\mathbb{E}_{\boldsymbol{z}}\left[\left(h_{*}(\boldsymbol{x})-\hat{f}_{\mathrm{NN}}\left(\boldsymbol{z} ; \bar{\rho}_{t}\right)\right) \nabla_{\left.\overline{\boldsymbol{\theta}}\left\{\bar{a}^{t} \sigma_{\bar{s}}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right)\right\}\right] .}^{\hat{f}_{\mathrm{NN}}\left(\boldsymbol{z} ; \bar{\rho}_{t}\right)=\int \bar{a}^{t} \mathbb{E}_{G}\left[\sigma\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle+\bar{s}^{t} G\right)\right] \bar{\rho}_{t}\left(\overline{\boldsymbol{\theta}}^{t}\right),}\right.
\end{gathered}
$$

from initialization $\bar{a}^{0} \sim \mu_{a}, \overline{\boldsymbol{u}}^{0}=\mathbf{0}$ and $\bar{s}^{0}=\kappa$.

- Gradient flow to learn $h_{*}(\boldsymbol{z})$ with effective 2-layer NN $\hat{f}_{\mathrm{NN}}\left(\boldsymbol{z} ; \bar{\rho}_{t}\right)$.
- As $d \rightarrow \infty$, MF dynamics concentrates on an effective dynamics over summary statistics of the weights and of the data.
\Longrightarrow Wasserstein gradient flow on $\bar{\rho}_{t} \in \mathcal{P}\left(\mathbb{R}^{P+2}\right)$ instead of $\mathcal{P}\left(\mathbb{R}^{d+1}\right)$.

Numerical illustration

$$
d=100, M=100:
$$

$$
h_{*}(\boldsymbol{z})=z_{1}+z_{1} z_{2}+z_{1} z_{2} z_{3}+z_{1} z_{2} z_{3} z_{4}
$$

Learning in $\Theta(d)$ iterations

- [Abbe, Boix-Adsera, M., '22] With probability at least $1-1 / M$:

$$
\sup _{k \in\{0, \ldots, T\}}\left\|\hat{f}_{\mathrm{NN}}\left(\cdot ; \Theta^{k}\right)-\hat{f}_{\mathrm{NN}}\left(\cdot ; \bar{\rho}_{k \eta}\right)\right\|_{L^{2}} \leq K e^{K(\eta T)^{7}}[\underbrace{\sqrt{\frac{P}{d}}}_{d \rightarrow \infty}+\underbrace{\sqrt{\frac{\log (M)}{M}}}_{M \rightarrow \infty}+\underbrace{\sqrt{d \eta}}_{\eta \rightarrow 0}]
$$

- If DF-PDE achieves $O(\varepsilon)$-test error in $\bar{T}_{*}=\bar{T}\left(h_{*}, \varepsilon\right)$, so does SGD w.h.p. when

$$
d \gtrsim C\left(\bar{T}_{*}\right) P / \varepsilon, \quad M \gtrsim C\left(\bar{T}_{*}\right) / \varepsilon, \quad \eta \lesssim d^{-1} \varepsilon / C\left(\bar{T}_{*}\right)
$$

Number of online SGD iterations (\# samples) $T=C\left(\bar{T}_{*}\right) d / \varepsilon=\Theta(d)$.

- For which h_{*}, does the DF-PDE converge to zero? (and therefore, h_{*} learned in $\Theta(d)$ steps in this regime)

Leap-1 functions

Fourier basis expansion of $h_{*}:\{ \pm 1\}^{P} \rightarrow \mathbb{R}$ (with \mathcal{Q} set of all $c_{S} \neq 0, S \subseteq\{1, \ldots, P\}$)

$$
h_{*}(z)=\sum_{S \in \mathcal{Q}} c_{S} \cdot \prod_{i \in S} z_{i}
$$

Leap-1 functions

$h_{*}:\{ \pm 1\}^{P} \rightarrow \mathbb{R}$ is a leap-1 function if we can order its non-zero monomials $\mathcal{Q}=\left(S_{1}, \ldots, S_{r}\right)$ such that for any $j \in[r]$, we have $\left|S_{j} \backslash\left(S_{1} \cup \ldots \cup S_{j-1}\right)\right| \leq 1$.
E.g., leap-1 functions:

$$
\begin{aligned}
& h_{*}(\boldsymbol{z})=z_{1}+z_{1} z_{2}+z_{1} z_{2} z_{3}+z_{1} z_{2} z_{3} z_{4}, \\
& h_{*}(z)=z_{1}+z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{4}+z_{3} z_{4} z_{5} .
\end{aligned}
$$

E.g., "higher leap" functions:

$$
\begin{aligned}
& h_{*}(\boldsymbol{z})=z_{1}+z_{1} z_{2} z_{3}+z_{1} z_{2} z_{3} z_{4} \\
& h_{*}(\boldsymbol{z})=z_{1}+z_{1} z_{2}+z_{3} z_{4}+z_{3} z_{4} z_{5}
\end{aligned}
$$

Leap-1 functions are learnable in $\Theta(d)$ steps

Theorem [Abbe, Boix-Adsera, Misiakiewicz, '22]

It is necessary and nearly sufficient* for h_{*} to be a leap- 1 function in order for DF-PDE to converge to 0 test error**.
Excludes a set of leap-1 functions $\left\{h_{}=\sum_{S \in \mathcal{Q}} c_{S} \chi_{S}\right\}$ with $\left\{c_{S}\right\}_{S \in \mathcal{Q}}$ of Lebesgue-measure-0. (This is unavoidable: DF-PDE does not converge for some degenerate leap-1 functions)
${ }^{* *}$ For positive result: layerwise training. Train $\overline{\boldsymbol{u}}^{t}$ for \bar{T}_{1} time, then \bar{a}^{t} for \bar{T}_{2} time.

- Leap- 1 functions are essentially the functions that are learned in $\Theta(d)$ steps.

$$
\underbrace{h_{*, 1}(\boldsymbol{z})=z_{1}+z_{1} z_{2}+z_{1} z_{2} z_{3}}_{T=\Theta(d) \text { SGD steps to learn }}, \quad \underbrace{h_{*, 2}(\boldsymbol{z})=z_{1} z_{2} z_{3}}_{\text {needs } T \gg d \text { steps }} .
$$

Intuition

- Learning $h_{*}(z)=z_{1} z_{2}$ with DF-PDE (recall $\bar{u}_{1}^{0}=\bar{u}_{2}^{0}=0$):

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \bar{u}_{1}^{t} \approx \mathbb{E}_{\boldsymbol{z}}\left[h_{*}(\boldsymbol{z}) \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right) z_{1}\right]=\mathbb{E}_{\boldsymbol{z}}\left[z_{2} \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right)\right] \propto \bar{u}_{2}^{t}, \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \bar{u}_{2}^{t} \approx \mathbb{E}_{\boldsymbol{z}}\left[h_{*}(\boldsymbol{z}) \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right) z_{2}\right]=\mathbb{E}_{\boldsymbol{z}}\left[z_{1} \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right)\right] \propto \bar{u}_{1}^{t}
\end{aligned}
$$

Hence dynamics is stuck at initialization $\bar{u}_{1}^{t}=\bar{u}_{2}^{t}=0$.

- Learning $h_{*}(\boldsymbol{z})=z_{1}+z_{1} z_{2}$ with DF-PDE:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \bar{u}_{1}^{t} \approx \mathbb{E}_{\boldsymbol{z}}\left[h_{*}(\boldsymbol{z}) \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right) z_{1}\right]=\mathbb{E}_{\boldsymbol{z}}\left[\left(1+z_{2}\right) \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right)\right] \propto 1+\bar{u}_{2}^{t} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \bar{u}_{2}^{t} \approx \mathbb{E}_{\boldsymbol{z}}\left[h_{*}(\boldsymbol{z}) \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right) z_{2}\right]=\mathbb{E}_{\boldsymbol{z}}\left[\left(z_{1} z_{2}+z_{1}\right) \sigma^{\prime}\left(\left\langle\overline{\boldsymbol{u}}^{t}, \boldsymbol{z}\right\rangle\right)\right] \propto \bar{u}_{1}^{t} \bar{u}_{2}^{t}+\bar{u}_{1}^{t}
\end{aligned}
$$

Hence low degree term allows the dynamics to escape saddle.

Higher leap functions:

$$
h_{*, 2}(z)=z_{1} z_{2} z_{3}
$$

Effective dynamics initialized at a saddle point (SGD needs $T \gg d$ to escape).

Leap-1 functions:

$$
h_{*, 1}(z)=z_{1}+z_{1} z_{2}+z_{1} z_{2} z_{3} .
$$

Low-degree terms allow escaping the saddle point.

(2) What about higher leap functions?

Escaping the saddle

Theorem [Abbe, Boix-Adsera, Misiakiewicz, '23]

For $h_{*}(\boldsymbol{z})=z_{1} \ldots z_{k}$ ("leap- k " function), SGD need $\widetilde{O}\left(d^{k-1}\right)$ steps to escape the saddle and fit the function.

Saddle: SGD slowly aligns \boldsymbol{w} 's with the k coordinates. k captures saddle complexity

$$
k=\text { "information exponent" [Ben Arous, Gheissari, Jagannath,'21] }
$$

"Leap complexity"

$$
h_{*}(z)=\sum_{S \in \mathcal{Q}} c_{S} \cdot \prod_{i \in S} z_{i}
$$

Leap complexity

We define the leap complexity of h_{*} as

$$
\operatorname{Leap}\left(h_{*}\right):=\min _{\pi \in \Pi_{|\mathcal{Q}|}} \max _{i \in|\mathcal{Q}|}\left|S_{\pi(i)} \backslash\left(S_{\pi(1)} \cup \ldots \cup S_{\pi(i-1)}\right)\right|
$$

In words, Leap $\left(h_{*}\right) \leq k$ iff we can order its non-zero monomials in a sequence such that each time a monomial is added, the support of h_{*} grows by at most k new coordinates.

$$
\begin{array}{ll}
\operatorname{Leap}\left(z_{1}+z_{1} z_{2}+z_{1} z_{2} z_{3}+z_{1} z_{2} z_{3} z_{4}\right)=1, & \text { Leap }\left(z_{1}+z_{2}+z_{2} z_{3} z_{4}\right)=2 \\
\operatorname{Leap}\left(z_{1}+z_{1} z_{2} z_{3}+z_{2} z_{3} z_{4} z_{5} z_{6} z_{7}\right)=4, & \text { Leap }\left(z_{1} z_{2} z_{3}+z_{2} z_{3} z_{4}\right)=3
\end{array}
$$

A general conjecture

Conjecture

For all but a measure-0 set of target functions h_{*}, online SGD requires

$$
\widetilde{\Theta}\left(d^{\left(\operatorname{Leap}\left(h_{*}\right)-1\right) \vee 1}\right) \text { steps to learn. }
$$

- Expect to hold for multilayer fully-connected NNs.
- Similar definition of Leap/conjecture for isotropic Gaussian data $\boldsymbol{x} \sim \mathrm{N}\left(0, \mathbf{I}_{d}\right)$. (more natural setting: can remove measure-0 set by considering an "isotropic" version of the leap)
- Total time complexity $\widetilde{\Theta}\left(d^{\text {Leap }\left(h_{*}\right) \vee 2}\right)$ matches lower bound of a large class of algorithms: the correlation statistical query (CSQ) algorithms.

Saddle-to-saddle dynamics

Picture: SGD sequentially aligns the weights with the sparse support with a saddle-to-saddle dynamics.

$$
h_{*}(\boldsymbol{z})=\frac{1}{\sqrt{3}}\left(z_{1}+z_{1} z_{2} z_{3} z_{4}+z_{1} z_{2} z_{3} z_{4} z_{5} z_{6} z_{7} z_{8}\right) .
$$

$d=30$, covariance of first layer weights during training.

Partial proof of the conjecture

- Difficulties:
$>$ For $T \gg d$, cannot use PDE approximation ($e^{\eta T}$ propagation of error).
\Rightarrow Requires to control a multiphase trajectory.
- Proof for $\boldsymbol{x} \sim \mathrm{N}\left(0, \mathbf{I}_{d}\right)$ and

$$
h_{*}(\boldsymbol{z})=z_{1} z_{2} \cdots z_{P_{1}}+z_{1} z_{2} \ldots z_{P_{2}}+\ldots+z_{1} z_{2} \cdots z_{P_{L}}
$$

with following modifications of SGD:
$>$ Layerwise training: first \boldsymbol{w}_{j} for T_{1} steps and then a_{j} for T_{2} steps.
$\ell_{\infty}+\ell_{2}$ projection on \boldsymbol{w}_{j}.

- Show:
$>$ If $T_{1}=d^{\text {Leap }\left(h_{*}\right)-1} \log (d)^{C}$, can fit with $T_{2}=\Theta(1)$.
- If $T_{1} \leq d^{\operatorname{Leap}\left(h_{*}\right)-1} / \log (d)^{C}$, cannot fit even with $T_{2}=\infty$.
- More precise theorem for saddle-to-saddle with increasing leaps.

General picture

When learning multi-index polynomials h_{*} :

- Kernel methods require $\Theta\left(d^{\left.\text {Degree(} h_{*}\right)}\right)$ samples.
- Online SGD on NNs: $n=\widetilde{\Theta}\left(d^{\left(\text {Leap }\left(h_{*}\right)-1\right) \vee 1}\right)$ samples/steps.

$$
\text { Typically: } \quad \operatorname{Leap}\left(h_{*}\right) \ll \operatorname{Degree}\left(h_{*}\right)
$$

(In fact, Leap $\left(h_{*}\right)=1$ a.s. on Fourier coeffs.)

- SGD picks up the support sequentially with a saddle-to-saddle dynamics.
- Implement "adaptive" /"curriculum" learning: first learn low-degree monomials, which in turn, makes learning higher-degree monomials easier.

$h_{*}(\boldsymbol{z})=$	$z_{1} \cdots z_{2 k}$	$z_{1} \cdots z_{k}+z_{1} \cdots z_{2 k}$	$z_{1}+z_{1} z_{2}+\ldots+z_{1} \cdots z_{2 k}$
Kernels	$\Omega\left(d^{2 k}\right)$	$\Omega\left(d^{2 k}\right)$	$\Omega\left(d^{2 k}\right)$
SGD on NN	$\tilde{\Theta}\left(d^{2 k-1}\right)$	$\tilde{\Theta}\left(d^{k-1}\right)$	$\Theta(d)$

Thank you!

Degenerate Leap-1 function

$d=100, M=100$:

$h_{*}(\boldsymbol{z})=z_{1}+z_{2}+z_{3}+z_{1} z_{2} z_{3}$: we have $u_{1}^{t}=u_{2}^{t}=u_{3}^{t}$ during the dynamics.

The Gaussian case

$$
h_{*}(\boldsymbol{z})=\sum_{S \in \mathcal{Z}^{P}} \hat{h}_{*}(S) \chi_{S}(\boldsymbol{z}), \quad \chi_{S}(\boldsymbol{z})=\operatorname{He}_{S_{i}}\left(z_{i}\right)
$$

For h_{*} with on-zero basis elements given by the subset $\mathcal{S}\left(h_{*}\right):=\left\{S_{1}, \ldots, S_{m}\right\}$

$$
\operatorname{Leap}\left(h_{*}\right):=\min _{\pi \in \Pi_{m}} \max _{i \in[m]}\left\|S_{\pi(i)} \backslash \cup_{j=0}^{i-1} S_{\pi(j)}\right\|_{1}
$$

where

$$
\left\|S_{\pi(i)} \backslash \cup_{j=0}^{i-1} S_{\pi(j)}\right\|_{1}:=\sum_{k \in[P]} S_{\pi(i)}(k) \mathbb{1}\left\{S_{\pi(j)}(k)=0, \forall j \in[i-1]\right\}
$$

Examples:
$\operatorname{Leap}\left(\operatorname{He}_{k}\left(z_{1}\right)\right)=\operatorname{Leap}\left(\operatorname{He}_{1}\left(z_{1}\right) \operatorname{He}_{1}\left(z_{2}\right) \cdots \operatorname{He}_{1}\left(z_{k}\right)\right)=k$,
$\operatorname{Leap}\left(\mathrm{He}_{k_{1}}\left(z_{1}\right)+\mathrm{He}_{k_{1}}\left(z_{1}\right) \mathrm{He}_{k_{2}}\left(z_{2}\right)+\mathrm{He}_{k_{1}}\left(z_{1}\right) \mathrm{He}_{k_{2}}\left(z_{2}\right) \mathrm{He}_{k_{3}}\left(z_{3}\right)\right)=\max \left(k_{1}, k_{2}, k_{3}\right)$,
$\operatorname{Leap}\left(\mathrm{He}_{2}\left(z_{1}\right)+\mathrm{He}_{2}\left(z_{2}\right)+\mathrm{He}_{2}\left(z_{3}\right)+\mathrm{He}_{3}\left(z_{1}\right) \mathrm{He}_{8}\left(z_{3}\right)\right)=2$.

IsoLeap

Def of Leap depends on the specific coordinate basis used in the expansion. Rotational symmetry of Gaussian distribution: use "isotropic leap":

$$
\text { isoLeap }\left(h_{*}\right)=\max _{R \in \mathcal{O}_{P}} \operatorname{Leap}\left(h_{*}, R\right)
$$

E.g., $h_{*}(\boldsymbol{z})=z_{1}+z_{2}+z_{1} z_{2}$: leap- 1 in this basis.

Take instead $\left(u_{1}, u_{2}\right) \rightarrow\left(z_{1}+z_{2}, z_{1}-z_{2}\right) / \sqrt{2}$

$$
h_{*}(z)=u_{1}+\mathrm{He}_{2}\left(u_{1}\right) / \sqrt{8}-\mathrm{He}_{2}\left(u_{2}\right) / \sqrt{8} .
$$

Hence isoLeap $\left(h_{*}\right)=2$.

Other example

Problem: learning ridge functions with deep neural networks (DNNs).

$$
\begin{gathered}
\left(\boldsymbol{x}_{i}, y_{i}\right) \text { iid with } y_{i}=f_{s}\left(\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle\right) \text { and } \boldsymbol{x}_{i} \sim \operatorname{Unif}\left([\pm \sqrt{3}]^{d}\right),\|\boldsymbol{\theta}\|_{2}=1, \\
f_{1}(x)=\frac{\tanh (x)}{0.628}, \quad f_{2}(x)=\frac{1}{0.1275}\left(\tanh (x)-3.422 \tanh ^{3}(x)+2.551 \tanh (x)^{5}\right) .
\end{gathered}
$$

[Schmidt-Hieber, ${ }^{\prime} 17$] DNNs can estimate both at nearly parametric rate $\log ^{2} n / n$.
Take $d=500$ and train DNNs with SGD (100 neurons per hidden layer):

$$
f_{1}(x)=\frac{\tanh (x)}{0.628}, \quad f_{2}(x)=\frac{1}{0.1275}\left(\tanh (x)-3.422 \tanh ^{3}(x)+2.551 \tanh (x)^{5}\right)
$$

[Abbe, Boix-Adsera, Misiakiewicz,'23]

- $f_{1}(\langle\boldsymbol{\theta}, \cdot\rangle)$ leap-1 function: $\Theta(d)$ steps.
$-f_{2}(\langle\boldsymbol{\theta}, \cdot\rangle)$ leap- 5 function: $\widetilde{\Theta}\left(d^{4}\right)$ steps.
- Take instead $f_{3}(\langle\boldsymbol{\theta}, \cdot\rangle)$ leap-3 fct

$$
f_{3}(x)=\frac{1}{0.2292}\left(\tanh (x)-1.4289 \tanh ^{3}(x)\right)
$$

