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Curse of dimensionality

Two observations:

▶ Deep Learning routinely solve high-dimensional problems.

▶ Curse of dimensionality: H = 1-bounded 1-Lipschitz functions on [0; 1]d,

With M neurons [Maiorov,’99] and n samples

Approx. error �M��(1=d) ; Gen. error � n��(1=d) :

Why does DL seemingly avoid the curse of dimensionality?
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Conjecture:
Real data has low-dimensional structure. NNs can adapt to it and break the CoD.

Simplest example: latent low-dimensional ("multi-index") functions, i.e., that
depend on a latent (unknown) low-dimensional subspace.

There exist P directions (u1; : : : ;uP ) with P � d such that

f�(x) = h�(hu1;xi; : : : ; huP ;xi) :
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▶ HP = ffunctions in H that depend on P -coordinatesg
[Bach,’17], [Schmidt-Hieber,’20], etc...

Approx. error �M��(1=P ) ; Gen. error � n��(1=P ) :

Intuition: ERM with M =1 + sparsity inducing norm,
�(hwj ;xi) with wj aligned with the P -dimensional support.

NNs can break the CoD on multi-index fcts in approx./gen.

▶ However, these results do not provide efficient algorithms (only hold with
unbounded computational resources).

This is unavoidable, because of computational hardness results.
[Klivans, Sherstov, ’09], [Neyshabur, Tomokia, Srerbro, ’15]

We expect some multi-index functions to be easier/harder to learn, which will not be
captured by studying approximation and generalization alone.
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Goal of this talk

Which multi-index functions are efficiently learned by NNs trained using SGD?

▶ Need to study the SGD training dynamics.

▶ Understand how SGD dynamically picks up the low-dimensional support.
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Setting
▶ Toy data distribution: x � Unif(f+1;�1gd) and sparse target function

f�(x) = h�(z) ; z 2 f�1gP unknown subset of P coordinates of x, P � d:

▶ 2-layer neural network with M neurons:

f̂NN(x;Θ) =
1

M

X
j2[M]

aj�(hwj ;xi) ; Θ = (θj)j2[M] = (aj ;wj)j2[M] :

▶ Goal: fit the target function f� by minimizing

min
Θ

R(f�;Θ) = Ex

h�
f�(x)� f̂NN(x;Θ)

�2i
:

▶ Online (one-pass) SGD: initialization (aj ;wj)j2[M] �iid �0.
Update: at each step k, fresh sample (xk; yk) with yk = f�(xk) + "k,

θk+1j = θkj + �
�
yk � f̂NN(xk;Θ

k)
�
� rθj

�
aj�(hxk;wk

j i)
	
:

(sample complexity n = number of SGD steps T )
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Motivating examples

h�;1(z) = z1 + z1z2 + z1z2z3 ; h�;2(z) = z1z2z3 :

Are these 2 functions equivalent for SGD-trained NNs? If not, which one is easier to
learn?
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T = number of SGD steps to reach 0:05 test error.

h�;1(z) = z1 + z1z2 + z1z2z3| {z }
T=n=�(d) SGD steps to learn

; h�;2(z) = z1z2z3| {z }
needs T = n = e�(d2) steps

:
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1 Which functions are learned in �(d) SGD steps?
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We need to study the dynamics:

θk+1j = θkj + �
�
yk � f̂NN(xk;Θ

k)
�
� rθj

�
aj�(hxk;wk

j i)
	
;

f̂NN(x;Θ
k) =

1

M

X
j2[M]

akj�(hwk
j ;xi) ; Θk = (θkj )j2[M] = (akj ;w

k
j )j2[M] :

Two approximations:

1 Mean-field approximation M !1, � ! 0.

2 Ambient dimension d!1.
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1 Mean-field approximation
[Mei et al,’18], [Chizat,Bach,’18], [Rotskoff,Vanden-Eijnden,’18], [Sirignano,Spiliopoulos,’18]

▶ M !1 limit: (θj)j2[M] replaced by � 2 P(Rd+1)

f̂NN(x;Θ) =
1

M

X
j2[M]

aj�(hwj ;xi) ; �! f̂NN(x; �) =

Z
a�(hw;xi)�(dθ) :

▶ � ! 0 limit: gradient flow on the population loss, (�t)t�0 solution of PDE with:

θt � �t ;
d

dt
θt = Ex

h�
f�(x)� f̂NN(x; �t)

�
rθfat�(hwt;xi)g

i
:

MF dynamics = gradient flow on population loss with M =1.

▶ [Mei, M., Montanari,’19] with probability at least 1� 1=M :

sup
k2f0;:::;Tg

f̂NN(�;Θk)� f̂NN(�; �k�)

L2
� KeK(�T )3

hr
log(M)

M| {z }
M!1

+
p
d�|{z}

�!0

i
:
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2 Ambient dimension d!1

Use the symmetry of the problem to show that MF dynamics is well approximated
by a low-dim dynamics as d!1 (with h�, P fixed).

▶ x � Unif(f+1;�1gd) and x = (z; r), z 2 RP , r 2 Rd�P , f�(x) = h�(z),

First layer weights: wt = (ut;vt), ut 2 RP and vt 2 Rd�P .

For w0 � N(0; �2Id=d):

f̂NN(x; �0) =

Z
a0�(hu0;zi+ hv0; ri)�0(dθt) =

Z
a0�(hu0;zi+ hv0;1i)�0(dθt)

=) f̂NN(z; �t) = Er[f̂NN(x; �t)] =

Z
atEr[�(hut;zi+ hvt; ri)]�t(dθt) :

▶ As d!1,

Er[�(hut;zi+ hvt; ri)]! EG[�(hut;zi+ kvtk2G)] =: �kvtk2(hut;zi) ;

and u0 ! 0, kv0k ! �.
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Dimension-free dynamics

▶ As d!1, (at;ut;vt) � �t approximated by θ
t
:= (at;ut; st) � �t 2 P(RP+2)

▶ �t follows a dimension free dynamics (DF-PDE):

θ
t � �t ;

d

dt
θ
t
= Ez

h�
h�(x)� f̂NN(z; �t)

�
rθfat�s(hut;zi)g

i
:

f̂NN(z; �t) =

Z
atEG[�(hut;zi+ stG)]�t(θ

t
) ;

from initialization a0 � �a, u0 = 0 and s0 = �.

▶ Gradient flow to learn h�(z) with effective 2-layer NN f̂NN(z; �t).

▶ As d!1, MF dynamics concentrates on an effective dynamics over summary
statistics of the weights and of the data.

=) Wasserstein gradient flow on �t 2 P(RP+2) instead of P(Rd+1).
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Numerical illustration

d = 100, M = 100:

h�(z) = z1 + z1z2 + z1z2z3 + z1z2z3z4
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Learning in �(d) iterations

▶ [Abbe, Boix-Adsera, M.,’22] With probability at least 1� 1=M :

sup
k2f0;:::;Tg

f̂NN(�;Θk)� f̂NN(�; �k�)

L2
� KeK(�T )7

hr
P

d|{z}
d!1

+

r
log(M)

M| {z }
M!1

+
p
d�|{z}

�!0

i

▶ If DF-PDE achieves O(")-test error in T � = T (h�; "), so does SGD w.h.p. when

d ≳ C(T �)P=" ; M ≳ C(T �)=" ; � ≲ d�1"=C(T �) ;

Number of online SGD iterations (# samples) T = C(T �)d=" = �(d).

▶ For which h�, does the DF-PDE converge to zero?
(and therefore, h� learned in �(d) steps in this regime)
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Leap-1 functions

Fourier basis expansion of h� : f�1gP ! R (with Q set of all cS 6= 0, S � f1; : : : ; Pg)

h�(z) =
X
S2Q

cS �
Y
i2S

zi :

Leap-1 functions
h� : f�1gP ! R is a leap-1 function if we can order its non-zero monomials
Q = (S1; : : : ; Sr) such that for any j 2 [r], we have jSj n (S1 [ : : : [ Sj�1)j � 1.

E.g., leap-1 functions: h�(z) = z1 + z1z2 + z1z2z3 + z1z2z3z4,

h�(z) = z1 + z1z2 + z2z3 + z3z4 + z3z4z5.

E.g., "higher leap" functions: h�(z) = z1 + z1z2z3 + z1z2z3z4,

h�(z) = z1 + z1z2 + z3z4 + z3z4z5.
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Leap-1 functions are learnable in �(d) steps

Theorem [Abbe, Boix-Adsera, Misiakiewicz,’22]
It is necessary and nearly sufficient� for h� to be a leap-1 function in order for
DF-PDE to converge to 0 test error��.

�Excludes a set of leap-1 functions
�
h� =

P
S2Q

cS�S

	
with fcSgS2Q of Lebesgue-measure-0.

(This is unavoidable: DF-PDE does not converge for some degenerate leap-1 functions)

��For positive result: layerwise training. Train ut for T 1 time, then at for T 2 time.

▶ Leap-1 functions are essentially the functions that are learned in �(d) steps.

h�;1(z) = z1 + z1z2 + z1z2z3| {z }
T=�(d) SGD steps to learn

; h�;2(z) = z1z2z3| {z }
needs T � d steps

:
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Intuition

▶ Learning h�(z) = z1z2 with DF-PDE (recall u01 = u02 = 0):

d

dt
ut1 � Ez[h�(z)�

0(hut;zi)z1] = Ez[z2�
0(hut;zi)] / ut2 ;

d

dt
ut2 � Ez[h�(z)�

0(hut;zi)z2] = Ez[z1�
0(hut;zi)] / ut1 :

Hence dynamics is stuck at initialization ut1 = ut2 = 0.

▶ Learning h�(z) = z1 + z1z2 with DF-PDE:

d

dt
ut1 � Ez[h�(z)�

0(hut;zi)z1] = Ez[(1 + z2)�
0(hut;zi)] / 1 + ut2 ;

d

dt
ut2 � Ez[h�(z)�

0(hut;zi)z2] = Ez[(z1z2 + z1)�
0(hut;zi)] / ut1u

t
2 + ut1 :

Hence low degree term allows the dynamics to escape saddle.

Theodor Misiakiewicz (Stanford) Learning leap functions April 24th, 2023 18 / 29



Higher leap functions:
h�;2(z) = z1z2z3 :

Effective dynamics initialized at a saddle point (SGD needs T � d to escape).
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Leap-1 functions:
h�;1(z) = z1 + z1z2 + z1z2z3 :

Low-degree terms allow escaping the saddle point.
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2 What about higher leap functions?
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Escaping the saddle

h�;2(z) = z1z2z3 :

Theorem [Abbe, Boix-Adsera, Misiakiewicz,’23]
For h�(z) = z1 : : : zk ("leap-k" function), SGD need eO(dk�1) steps to escape the
saddle and fit the function.

Saddle: SGD slowly aligns w’s with the k coordinates. k captures saddle complexity
k = "information exponent" [Ben Arous, Gheissari, Jagannath,’21]
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“Leap complexity”

h�(z) =
X
S2Q

cS �
Y
i2S

zi :

Leap complexity
We define the leap complexity of h� as

Leap(h�) := min
�2�jQj

max
i2jQj

jS�(i) n (S�(1) [ : : : [ S�(i�1))j :

In words, Leap(h�) � k iff we can order its non-zero monomials in a sequence such
that each time a monomial is added, the support of h� grows by at most k new
coordinates.

Leap(z1 + z1z2 + z1z2z3 + z1z2z3z4) = 1 ; Leap(z1 + z2 + z2z3z4) = 2 ;

Leap(z1 + z1z2z3 + z2z3z4z5z6z7) = 4 ; Leap(z1z2z3 + z2z3z4) = 3 ;
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A general conjecture

Conjecture
For all but a measure-0 set of target functions h�, online SGD requires

e��d(Leap(h�)�1)_1� steps to learn.

▶ Expect to hold for multilayer fully-connected NNs.

▶ Similar definition of Leap/conjecture for isotropic Gaussian data x � N(0; Id).
(more natural setting: can remove measure-0 set by considering an "isotropic"
version of the leap)

▶ Total time complexity e��dLeap(h�)_2� matches lower bound of a large class of
algorithms: the correlation statistical query (CSQ) algorithms.
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Saddle-to-saddle dynamics

h�(z) = z1 + z1z2 � � � z5 + z1z2 � � � z9 + z1z2 � � � z14 :

Picture: SGD sequentially aligns the weights with the sparse support with a
saddle-to-saddle dynamics.
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h�(z) =
1p
3

�
z1 + z1z2z3z4 + z1z2z3z4z5z6z7z8

�
:

d = 30, covariance of first layer weights during training.
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Partial proof of the conjecture
▶ Difficulties:

▶ For T � d, cannot use PDE approximation (e�T propagation of error).
▶ Requires to control a multiphase trajectory.

▶ Proof for x � N(0; Id) and

h�(z) = z1z2 � � � zP1 + z1z2 : : : zP2 + : : :+ z1z2 � � � zPL ;

with following modifications of SGD:
▶ Layerwise training: first wj for T1 steps and then aj for T2 steps.

▶ `1 + `2 projection on wj .

▶ Show:
▶ If T1 = dLeap(h�)�1 log(d)C , can fit with T2 = �(1).

▶ If T1 � dLeap(h�)�1= log(d)C , cannot fit even with T2 =1.

▶ More precise theorem for saddle-to-saddle with increasing leaps.
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General picture
When learning multi-index polynomials h�:
▶ Kernel methods require �(dDegree(h�)) samples.

▶ Online SGD on NNs: n = e��d(Leap(h�)�1)_1� samples/steps.

Typically: Leap(h�)� Degree(h�)

(In fact, Leap(h�) = 1 a.s. on Fourier coeffs.)

▶ SGD picks up the support sequentially with a saddle-to-saddle dynamics.

▶ Implement "adaptive"/"curriculum" learning: first learn low-degree monomials,
which in turn, makes learning higher-degree monomials easier.

h�(z) = z1 � � � z2k z1 � � � zk + z1 � � � z2k z1 + z1z2 + : : :+ z1 � � � z2k
Kernels 
(d2k) 
(d2k) 
(d2k)

SGD on NN ~�(d2k�1) ~�(dk�1) �(d)
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Thank you!
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Degenerate Leap-1 function

d = 100, M = 100:
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h1(z) = z1 + z2 + z3 + z1z2z3
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h�(z) = z1 + z2 + z3 + z1z2z3: we have ut1 = ut2 = ut3 during the dynamics.

Theodor Misiakiewicz (Stanford) Learning leap functions April 24th, 2023 1 / 5



The Gaussian case

h�(z) =
X
S2ZP

ĥ�(S)�S(z); �S(z) = HeSi(zi) :

For h� with on-zero basis elements given by the subset S(h�) := fS1; : : : ; Smg

Leap(h�) := min
�2�m

max
i2[m]

S�(i) n [i�1j=0S�(j)

1
;

where

kS�(i) n [i�1j=0S�(j)k1 :=
X
k2[P ]

S�(i)(k)1fS�(j)(k) = 0; 8j 2 [i� 1]g

Examples:

Leap(Hek(z1)) = Leap(He1(z1)He1(z2) � � �He1(zk)) = k ;

Leap(Hek1(z1) + Hek1(z1)Hek2(z2) + Hek1(z1)Hek2(z2)Hek3(z3)) = max(k1; k2; k3) ;

Leap(He2(z1) + He2(z2) + He2(z3) + He3(z1)He8(z3)) = 2 :
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IsoLeap

Def of Leap depends on the specific coordinate basis used in the expansion.

Rotational symmetry of Gaussian distribution: use "isotropic leap":

isoLeap(h�) = max
R2OP

Leap(h�; R) ;

E.g., h�(z) = z1 + z2 + z1z2: leap-1 in this basis.

Take instead (u1; u2)! (z1 + z2; z1 � z2)=
p
2

h�(z) = u1 +He2(u1)=
p
8� He2(u2)=

p
8 :

Hence isoLeap(h�) = 2.
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Other example
Problem: learning ridge functions with deep neural networks (DNNs).

(xi; yi) iid with yi = fs(hθ;xii) and xi � Unif([�p3]d); kθk2 = 1,

f1(x) =
tanh(x)

0:628
; f2(x) =

1

0:1275

�
tanh(x)� 3:422 tanh3(x) + 2:551 tanh(x)5

�
:

[Schmidt-Hieber,’17] DNNs can estimate both at nearly parametric rate log2 n=n.

Take d = 500 and train DNNs with SGD (100 neurons per hidden layer):

[AoS discussion, Ghorbani, Mei, Misiakiewicz, Montanari, 2020].
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f1(x) =
tanh(x)

0:628
; f2(x) =

1

0:1275

�
tanh(x)� 3:422 tanh3(x) + 2:551 tanh(x)5

�
:

[Abbe, Boix-Adsera, Misiakiewicz,’23]
▶ f1(hθ; �i) leap-1 function: �(d) steps.

▶ f2(hθ; �i) leap-5 function: e�(d4) steps.

▶ Take instead f3(hθ; �i) leap-3 fct

f3(x) =
1

0:2292

�
tanh(x)� 1:4289 tanh3(x)

�
:
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