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In Focus High-Performance Computing
Excerpts from an interview on January 30, 2012

Patrick Regan 

At one end of the Internet-video call, Hans Fischer Senior Fellow 

Markus Hegland (MH) and TUM doctoral candidate Christoph Kowitz 

(CK) were easing into a warm summer evening. Still shaking off the 

chill of a winter morning were Carl von Linde Junior Fellow Miriam 

Mehl (MM), postdoctoral researcher Dirk Pflüger (DP), doctoral can-

didate Valeriy Khakhutskyy (VK), and TUM Professor Hans-Joachim 

Bungartz (HB), host of the High-Performance Computing Focus 

Group (and co-coordinator of a new DFG Priority Program on  

“Software for Exascale Computing”).

Meetings like this, linking TUM’s Garching campus with Hegland’s 

home institution, the Australian National University in Canberra, are 

nothing unusual for this tightly knit group of researchers. The only 

thing out of the ordinary was devoting a whole meeting to answering 

a reporter’s questions, all the while doing a remarkable job of seem-

ing unaware of the circling, snapping photographer. The aim of the 

meeting was – and the aim of this article is –  to offer a special kind 

of insight into how the TUM-IAS functions by looking inside its basic 

working unit, the Focus Group.
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102 As in most of the TUM-IAS Focus Groups, 

basic scientific questions and application-

oriented issues intertwine with and enhance 

each other throughout a program that is, by 

necessity and design, multidisciplinary. In 

this case, the research focuses on problems 

in computer science, mathematics, engi-

neering, and physics that have been brought 

to the fore by advances in supercomput-

ing technology; at the same time, applica-

tions ranging from aerospace engineering 

to plasma physics stand to benefit from the 

results. (PR)

PR: The concept of high performance gets redefined 
a lot more frequently for computers than, say, for au-
tomobiles. What does “high-performance computing” 
mean today, and looking ahead over the next decade 
or so? And why do the performance trends raise new 
research problems?

HB: It has always meant the top level of computing 
power that is available. Today a typical benchmark 
would be several petaFLOPS, meaning 1015 floating-
point operations per second, and within ten years we 
definitely will have entered into the “exa” era, 1018 
FLOPS. For decades, beginning in the 1960s, it was 
the machines themselves that dominated the field of 
high-performance computing. But over the past ten 
years, algorithms and software have been getting 
more of the focus.
 
People see that if you have a fast car, a Ferrari, you 
need someone who is really able to drive it. That’s 
basically where we are today:  People see that if the 
hardware moves on at such a speed, then there won’t 
be that many groups that are really able to manage all 
the software issues.

There’s another reason this is a turning point. For a 
long time, people in application areas could avoid 
the difficult transition to parallel computing – which 

requires parallel programming – by buying a bigger 
machine with a small number of faster processors. 
But today, at around 3 GHz, the processors are com-
ing to a physical boundary, and going into the parallel 
is your only chance.

MM: That’s something we all have to face, the prob-
lem of getting a complex algorithm, either composed 
of different models or involving multiple dimensions, 
to a multicore computer.

HB: I always give this analogy: If a field needs to be 
ploughed, typically a farmer would prefer four big 
oxen to one billion ants. But what we will have in the 
future is one billion ants, and the farmer has to think 
about how he can do his classical jobs, no longer 
with four strong oxen but with the ants. And that’s the 
technological challenge we have now.

PR: Coming from a farming family, I can say that 
sounds like a discouraging prospect. But I get the 
point: A change as radical as that is unavoidable 
for high-performance computing. What are the im-
plications?

MM: In the past if you did parallelization, 64 proces-
sors was already a lot. That’s what you still hear in 
some fields. But now we have to face a hundred 
thousand processors, and we have to do completely 
different things. For example, you have to handle 
faults. You have hardware that doesn’t work as you 
would expect it to. Think about having a hundred 
thousand cores, and you can calculate the probability 
that something doesn’t work.

HB: It will get even harder to get pieces of software 
that run decently, to get data into and out of the 
computer, to get the data processed, and also to 
extract the knowledge out of the numbers. Imagine 
that you have just one set of data with 1018 bytes – 
someone has to tell us what this means, whether it is 
a weather forecast or some technical project. Paral-
lelization, and in particular in a massively parallel 
way – not tens or hundreds, but hundreds of thou-
sands of processors – is the biggest issue. However, 
this goes beyond a mere parallelization in the sense 
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of taking existing codes and algorithms and turning 
them into something parallel by force. Many current 
algorithms have intrinsically sequential parts. Think 
of a coffee machine – the standard joke that coffee 
comes first and the cup drops out at the end is an 
example of a sequential part of an algorithm. One 
interpretation of that, called Amdahl’s law, led to a 
very critical perspective on parallelism for decades. 
However, not all that is sequential in an algorithm is 
enforced by the underlying problem. Sometimes, we 
just have to think about a completely new algorithm 
design. To “think parallel” – designing algorithms 
and programs that are inherently parallel, and which 
could only be sequentialized by force – that’s what is 
needed.

PR: This transition to larger-scale multicore process-
ing is just part of a whole constellation of “multi” is-
sues that come up in your group’s research plans and 
publications: multiphysics – meaning the coupling of 
multiple physical models – multidimensional, multi-
scale, multilevel. What’s the best way to sort them out 
for people, like me and most of our readers, who are 
outside this field?

HB: There is a way of classifying all these multis. 
Maybe this reduces the jungle a bit. There are multis 
that come from the problem, which is typically mul-
tiscale. A phenomenon like turbulence, for exam-
ple, is multiscale. You have very tiny vortices, but 
these tiny vortices define the macroscopic picture. 
Multidimensional is also coming from the problem, 
because you have the dimensionality in the prob-
lem. Then you have a second group of multis that 
deal with the algorithms, how you want to work on 
these problems. Multilevel for example is a classical 
approach to tackling multiscale; it’s the algorithmic 
weapon that lets you represent a multiscale phe-
nomenon in a very efficient way. 

And then you have a third group, not the algorithmic 
but the technological weapons, such as multicore. 
Multicore has nothing to do with the problem, has 
not that much to do with the algorithms; that’s 
just the machine part. If you think in terms of the 
three boxes associated with problems, algorithms, 
and hardware, then maybe there’s less chance for 
confusion about all these multis and the interplay 
between them.

Hans-Joachim Bungartz, Miriam Mehl
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means you cannot just focus on one topic. You 
need them all to be high-performing in the end. 
Why do we do multiphysics? Because one model is 
not accurate enough. Typically you neglect some-
thing. If you simulate an airplane only simulating the 
flow, you don’t include the flexing, up-and-down 
 movements of the wings and their interaction with 
the flow again. So to be more accurate you need 
multiphysics, and then you have to be accurate on 
each field. And for that you need the multicore. And 
if you want to optimize in addition you have multiple 
parameters, and then you are in the multidimen-
sional field. 

DP: To tackle today’s challenges, you can’t as a 
scientist just choose a problem, go back to your 
room, and come back a few years later with a solu-
tion. That just doesn’t work any more. The problems 
are too complex. So you need to bring different ideas 
together, and you need a group that tackles a variety 
of sub-problems. That’s one of the big advantages of 
the TUM-IAS Focus Group.

PR: That puts the spotlight on the other big “multi” in 
the picture, multidisciplinary. I’m interested in under-
standing how the group divides the problems and 
melds the diverse activities into an integrated pro-
gram bigger than the sum of the parts.

HB: There’s a strong bias toward the multidimensional 
right now, with Markus, Christoph, Dirk, and Valeriy 
working mainly on that. Miriam is concentrating on 
multiphysics. We’re hoping to be joined in 2012 by 
someone who will focus more on multicore; for now 
I’m wearing the multicore hat, which is natural since I 
serve on the directorate and steering committe of the 
Leibniz Supercomputing Center. I’m eager to spend 
more time thinking about parallel concepts, working 
on parallel solutions for important problems where the 
current state of algorithmics faces huge roadblocks. 
But to be honest, finding time for that will not be 
easy for me, since I’m also serving as the “glue” for 
our Focus Group, helping to keep the three threads 
together. 

As Miriam said, these things are interwoven, much 
more than you’d suspect from the way they have 
been addressed in the past. Typically the groups are 
quite separated, especially the multidimensional, 
which lies more in classical computer science or 
applied mathematics and not that much in physi-
cal modeling. But here we are bringing in a classical 
multiphysics problem from plasma physics and trying 
to combine it with a multidimensional approach and 
then to bring it into a multicore machine. 

Valeriy Khakhutskyy and Dirk Pflüger

Patrick Regan
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Christoph Kowitz and Markus Hegland

That’s a unique chance we have here with this group, 
but it calls for an orchestrator, so that’s my main role.

PR: Sometimes it helps to have a musician in the 
group, any kind of group.

HB: It’s true, over the weekend I was playing 
Beethoven and Bruckner. Yes, I like the orchestrator 
metaphor better than glue.

PR: One common theme seems to be that models 
and predictive analyses are inherently limited for the 
same reason that they work, because you’ve ab-
stracted something out of reality. Could you tell me 
more about the various ways you’re working to close 
the distance between simulation and the real world, 
or between prediction and the way things happen?

MH: Let’s consider the multidimensional aspects. In 
the early days of computation, the first flow simula-
tions for example were in two dimensions. That’s 
as you say an abstraction from the real world, and 
the real world is three-dimensional. So it was a big 

improvement of course when we got simulations 
that could really deal with three-dimensional effects; 
that’s especially important in fluid flow. But now we’re 
looking at breaking the barrier and adding even extra 
dimensions. Why do we need extra dimensions? 
Well, let’s say with fluid flow, in addition to our three-
dimensional spatial variables, we can have different 
velocities, for example in gases, in the same places. 
So we have an additional three dimensions, and that 
gives us six. Now why don’t we have that in tradi-
tional fluid dynamics? That’s because a distribution 
is assumed at every point. We assume a so-called 
Boltzmann law or a Gaussian law of the velocities. 
But for realistic simulations, in many areas we need at 
least six dimensions.

VK:  My research will be on data mining in high di-
mensions, where we have problems with ten, twenty, 
or a hundred dimensions. We’re looking at actual 
data, any measured data, either from simulations 
or from real measurements, and here “dimensions” 
means the number of parameters that we can simul-
taneously deal with. For data mining this means  
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tween the data, and trying to induce the rules and 
make predictions. The challenge is how to master 
these problems using methods from computational 
science. And there are a lot of applications. 

For example, one of the next projects we’ll be working 
on has to do with time series predictions in all kinds 
of applications, like financial series or physics. Every-
where we have data depending on time, measures are 
taken every moment of time, and in order to get the 
prediction correct, you have to consider everything 
that happened in the past. That’s where high dimen-
sions can appear. 

MH: Talking about predictions, that is a very impor-
tant problem too. Starting in the 1990s, for example, 
we worked together with insurance companies and 
predicted risk. Insurance companies need to be able to 
predict the risk of having an accident, and banks need 
to predict the risk of default. These predictions are 
based on features, lots of different features that will al-
low you to predict the risk that some event will happen. 
Similarly, companies like Google and Amazon try to 
predict what an individual might be interested in, and 
agencies involved with security or immigration control 
have questions that are basically not so different.

The main tools used for prediction are mathematical 
functions. You can have functions of many variables, 
and of course each variable can take on many differ-
ent values. If you have a new customer, typically this 
new customer will have features that are different 
from the ones you’ve seen in other customers.  
How do you interpolate between all these other  
customers? So you have a function with 20 varia-
bles, and you need to interpolate what you’ve seen 
before. Or you need to do a regression. That’s a 
classic problem, which Valeriy and Dirk have also 
worked on. And of course my main interest is in 
computation. 

How can we do this fast? And there’s this curse of 
dimensionality. So one way is to calculate the values 
of your functions for all possible customers.  
And again you have this curse of dimensionality.  
So if you have your first feature, and you can take 
ten different values, and the second one can take 
ten different values, you have a hundred combina-
tions. It’s a combinatorial problem really. And if you 
have a third feature, you know, you have already a 
list with a thousand values. If you have ten features, 
you have ten to the ten different values. That’s a 
lot of values. And it’s infeasible to even store these 
things. That’s one reason we use so-called sparse 
grids. But another interesting aspect is that a col-
league of mine, Jochen Garcke, found that some 
of the traditional combinatorial techniques we used 
were unstable. 

PR: Meaning what?



107MH: Unstable means basically that small perturbations 
or small errors can have a big effect. That’s something 
that you know from extrapolation. These techniques 
are related to extrapolation. Weather forecasting, for 
example, is extrapolation. It’s very difficult. You can 
get it wrong. The further you want to extrapolate, the 
worse it is. So you tabulate on a regular grid, and you 
want to extrapolate what is in between the values on 
the grid. And you have exactly the same effects as if 
you would like to predict what happens to the stock 
market in the future. It can go wrong. Extrapolation is, 
we call it, inherently unstable. But we have an answer. 
We have a cure for this instability. We have a stable 
approach based on relatively classical numerical tech-
niques, an idea in numerical analysis; you can show 
that you can solve these problems, partial differential 
equations, by relating them to minimization problems. 
Minimization problems are inherently stable, whereas 
extrapolation problems are inherently unstable, and we 
found a way to cure this instability by reframing it as an 
optimization problem. I’m working also with Christoph 
on applying this concept, which originally came from 
our work in data mining, in more general contexts in 
physics.

PR: I’d like to hear more about this “curse” of dimen-
sionality, which comes up regularly in group members’ 
papers. What exactly does it mean?

CK: It may be easiest to explain in connection with 
an application. I’m collaborating with scientists at the 
Max Planck Institute for Plasma Physics in Garching. 
The larger context is research toward a future energy 
source from nuclear fusion rather than fission. The 
basic idea is to magnetically confine isotopes of hydro-
gen in a really hot vessel so that nuclei fuse together 
and produce energy. 

The problem there is they want to simulate the behav-
ior of a hot fusion plasma in this vessel, a so-called 
tokamak. The simulations are done to be able to con-
fine the plasma effectively, to prevent the particles from 
going out of the interesting zone, the hot zone in the 
plasma, so that they are fusing. You have a spectrum 
of applicable models. You can have a single-particle 
description, where you just take every plasma particle 

for itself, to look how it’s moving through the magnetic 
field. At the other end of the spectrum you can have a 
fluid-like description of the plasma, where you say, this 
is a continuum, or more or less a gas, which is acting 
a bit stranger than a regular gas. And somewhere in 
between these extremes are the gyrokinetic simulations 
that the IPP physicists are doing. They don’t have single 
particles – the particles are not resolved themselves – 
what you have is more like a statistical description of 
these particles; but it’s still more complicated and more 
detailed than a gas-like description or a fluid descrip-
tion. So, somewhat “in between.” 

What the physicists are especially interested in is simu-
lating the turbulence, with high resolution in space and 
time, to be able to understand how it works in detail. 
And there we’re not just using a three-dimensional 
fluid simulation, but a five-dimensional simulation, a 
so-called gyrokinetic simulation. The problem is now 
if you want to simulate something in five dimensions, 
you have to resolve it in this space. And just to get a 
moderately high resolution in this space, you already 
need vast amounts of data points. So there are huge 
amounts of data you have to handle and you have to do 
computations with. Here we’ve really come to the curse 
of dimensionality.

Just imagine a really small one-dimensional space. If 
you want to have a cube in one-dimensional space, it’s 
basically just two points, left and right. If you extend that 
cube to two dimensions you get a square, and that’s 
already four points. If you extend it to three dimensions, 
you already get eight points, which is a three-dimension-
al cube. Now imagine just adding two more dimensions. 
You’re suddenly at 32 points for that cube, and this is 
just the smallest cell that you can re s olve – but for this 
plasma physics code you need vast amounts of these 
unit-squares or unit-cubes. For current simulations, 
which run on supercomputers for days or even weeks, 
they have up to one billion data points, which is 200 
gigabytes of data they do computations with. 

For each of them you have to do some computations, 
and then you move on to the next time step. Then you 
do all the calculations again, and then again you move 
a tiny bit forward in time. But only that way are you able 
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to resolve the turbulence, to understand what’s really 
going on in that tokamak. If you don’t understand that, 
then it will be harder to confine that 200 million degree 
plasma. 

PR: And this is without even considering any multiphys-
ics aspects of the fusion plasma simulation.

CK: That’s right. I’m focusing at this point on ways to 
handle the multidimensionality of the gyrokinetic turbu-
lence simulation using the IPP code called GENE.

PR: Meanwhile, Miriam, you are leading the multi-
physics effort. I guess the most familiar example of 
multiphysics would be the coupling of atmosphere 
and ocean models to produce more reliable weather 
reports or climate simulations. Here you’re focusing 
mainly on coupling flow models for fluids such as 
air, water, or circulating blood with models of flexible 
solid structures. What are the difficulties, and how are 
you addressing them?

MM: Imagine two people meet at a conference and 
decide to couple one code that solves for fluid flows 
with another that does structural mechanics compu-
tations. You first have to tackle this technically, how 
to make these two codes talk to each other, and then 
you probably notice that you get something that is 
not reasonable at all. You may get for example large 
oscillations, wings breaking away from the plane, and 
that’s just the numerical instability. So then you have 
to add something there, and once you have done all 
this, you probably want to concentrate on efficiency, 
how to make the solving fast, not only stable, and 
of course also accurate. And the next step will be to 
bring this onto a large machine, so there of course 
you have additional difficulties. We have several 
codes, they should run in parallel, preferably in a 
load-balanced way, so you should prevent a situation 
where one part is ready very fast and the other one 
runs over a long time and you have idle processors. 
It’s a challenge to run just one code efficiently on a 
multicore machine. 

One of the things we use to address multiphysics 
problems is a coupling environment called preCICE, 
which was originally developed in our group under a 
grant from the German Research Foundation. That 
was originally developed for fluid-structure interac-
tions. The idea was to have something that works in 
a way that computer scientists always like things to 
work, in a very modular way. The idea is you have two 
solvers, fluid solver and structure solver, and you just 
plug them together with this glue software, and then 
everything works. And once you decide you want to 
exchange your flow solver – because you want to 
simulate a different application with different needs, 
and you’ve found a specific solver that works for 
that – you exchange it and all the other parts remain 
unchanged. 

That’s something you don’t find in currently available 
commercial tools. There is commercial multiphys-
ics software, but it’s not modular in this sense. There 
also is coupling software, but it doesn’t have the full 
functionality. You don’t just need a tool that performs 
data communication between two codes. There’s 
also numerics in it: So, how do you iterate, how many 
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in one time step, and in which order, and what data 
do they exchange? There is a lot that should be in 
that central coupling unit, because if it’s in one of 
the solvers, you have to redo everything every time 
you exchange one of the parts. That was the original 
idea, and it has more and more become a generic 
tool for coupling different physics. That’s the direc-
tion we are going, to make it more generic, not only 
for fluid and structure, but also to make it work for 
other kinds of multiphysics applications. And on the 
solver side, we’ve found we can greatly enhance 
performance by implementing certain kinds of data 
structures, particularly tree-structured adaptive com-
putational grids. We have a home-grown flow solver 
called Peano that brings both hardware efficiency 
and numerical efficiency to simulations of fluid-struc-
ture interactions.

PR: A concept that comes up a lot in your papers, in 
all kinds of different contexts, is “sparse grids.” What 
does it mean, and how does it help?

DP: If you are dealing with high-dimensional prob-
lems, you can’t just use your brute force approaches, 
the classical ones. You have to try to represent the 
important structures with as little effort as possible, 
and you have to try to adapt to certain properties of 
the problem at hand. With sparse grid techniques you 
focus on the most important things first, and then try 
to express the less important parts, and if you can 
start to neglect some of those parts, you can tackle 
really high-dimensional problems. And that’s where 
my focus is, trying to express, with as little work as 
possible algorithmically, computationally, the high-
dimensional problems. 

We’re also building a software toolbox called SG++, 
for dealing with these high-dimensional problems 
using spatially adaptive sparse grids. We’re trying 
to include the basic ingredients for different types 
of high-dimensional problems, from plasma physics 
to data mining to other problems, option pricing in 
finance for instance, bringing those things together 
to provide the means of tackling that whole range of 
problems.

HB: If you have one dimension, you have n points. 
If you have d dimensions, then you have n to the d 
points. So n square, n cube. So to achieve a specific 
accuracy for your problem, you have to invest n to the 
d points. If d increases, this is the curse of dimension-
ality. So the question now is: Is there any strategy you 
could develop where you can do only with n –  that 
is, where you always invest, say, 117 grid points, and 
it doesn’t matter if you are in a one-dimensional or 
a 15-dimensional domain. And the answer is fun-
nily yes, and this is Monte Carlo; there you don’t 
work with grid points, but you work with degrees of 
freedom. So you need 117 shots, and you can get 
similar quality, and the problem is not interested in the 
dimension of your domain. But the drawback is that 
you get a very lousy approximation quality. 

So that’s the reason why so many people work with 
Monte Carlo. It works, it is easy. But as soon as they 
have something else, they turn to something else, 
because something else is basically always better. 
And now the question was, is there anything else? 
This was the idea of sparse grids, and the result is 
now – I simplify strongly but – the result is that you 
get an algorithm that lets you work with a number 
of grid points that only moderately depends on the 
dimensionality and still obtain the same quality that 
you get with the n to the d approach. So that means 
you get a product of the same quality but for a much 
smaller price. It is attractive for three dimensions – 
you can just increase your resolution and make things 
finer – but it is essential for the higher-dimensional 
case, because now you can do something numeri-
cally in situations where you could not do anything 
numerically apart from Monte Carlo before. That’s a 
very rough idea of it.

PR: Research involving sparse grids has a history in 
Munich, doesn’t it – including your own contributions?

HB: It has a history in Munich, and it has a history 
beyond Munich. The new era of sparse grids started 
in Munich around 1990 with the work of Christoph 
Zenger and his PhD students at that time. The older 
part of the story is like always. I always say you have 
to do this “cherchez le Russe” – you have to find 
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In the case of sparse grids, we haven’t discovered 
the Chinese guy yet, but there are definitely Russian 
guys in the 1950s, in approximation theory. But no 
one did anything practical with it, or even thought of 
solving partial differential equations. The equations 
are something that definitely came with this reinven-
tion, but the mathematics behind it goes way back, 
to Archimedes. So now I have to draw a picture. The 
task of Archimedes was to get the area of the parab-
ola, but he didn’t have calculus, he didn’t know about 
an integral. But he could make points here, and then 
trapezoids, and calculate the area of each trapezoid 
and sum them up. As the story goes, Archimedes’ 
wife came along and said that’s not accurate enough, 
so you have to introduce additional ones. And the 
problematic thing is then you have to forget every-
thing you’ve calculated so far; you have to do it 
completely from scratch for every change in the grid 
points, which is extremely expensive if you don’t have 
a pocket calculator. 

Good mathematicians are always lazy. So he thought 
about something to improve that, and this is where 
this picture comes in, where he invented this so-
called hierarchical basis. He said let’s start with a big 
triangle, and let’s add smaller and smaller triangles. 
And you see with this first big triangle, it already is 
quite a decent approximation. And if you add the 
next two, then you’ve already improved the precision. 
This is how Archimedes in the third century before 
Christ was basically defining all the ingredients you 
need for the sparse grids. Not in higher dimensional-
ity in this case –  that came later – but the main idea. 

So I would therefore say that the first hour as far as 
we know so far is actually Archimedes sitting on the 
beach and thinking about integrals.

At this point, laughter was heard from the Australian 
end of the videoconference.

MM: And now they’re sitting on the beach.

HB: They are trying to mimic this, sitting on the 
beach and thinking and getting great ideas like 
Archimedes.

PR: That brings me to a simple, practical question. 
You’ve explained a lot about what makes the group 
a group, such as the interconnectedness of the 
problems and the active role of Hans as orchestra-
tor. But I’m also interested in how the advantages of 
this geographically challenging collaboration out-
weigh the potential disadvantages.

HB: We met Markus before, at conferences, but 
thanks to the TUM-IAS we have now a framework 
to collaborate in a deeper way – together with time 
and free space to think about things – and I think 
that’s a very important contribution you cannot 
overestimate in that context. 

DP: We are spending a great effort to bridge the 
gap between Australia and Germany. Currently 
Christoph is over there, and I was in Australia the 
last three months of 2011. At the beginning of June, 
Markus will be here. We have video group meetings 
on a regular basis.

MH: We talk to each other of course when there are 
pressing scientific questions that we need to dis-
cuss. But in addition to that, our colleagues from 
Munich join by video in an extended research group 
meeting I have every Wednesday, typically a group 
of ten or so including five or six doctoral candidates. 

CK: When I’m here at ANU, I can work intensively 
with Markus, and that’s definitely one advantage. 
But it’s not only Markus. We are now working 
together with Mike Osborne and other scientists 
here. I’m not a mathematician, so for me it’s always 
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interesting to hear what the mathematical PhD  
candidates or professors are thinking. It’s inter-
esting to get in this different environment where 
people see my problem in a completely different 
way, or bring up problems where I don’t see any 
problems at all.

DP: When I was there, we even started new projects. 
We were able to look at new scientific problems, 
which is not that easy to do via electronic communi-
cations alone. 

PR: Can you give an example? 

DP: There is one subtask I ran into using sparse grids 
for classification. We found a solution that works, 
but we didn’t understand how it works or why it 
works from a theoretical point of view. Now, bring-
ing together our hands-on approach from computer 
science and Markus’s knowledge from mathemat-
ics, we’ve been able to study that and gain a deeper 
understanding. This is something that needs plenty 

of discussions, that needs intensive cooperation, and 
that just doesn’t work electronically, in my experience.

MH: And of course this close connection to Munich, 
to Garching in particular, has advantages for me and 
my research group at ANU.

HB: I think if you look on a European scale, from 
a computational point of view, there is no better 
place to do this. Facing each other across Boltz-
mannstrasse in Garching are, on one side, our com-
puter science and mathematics departments and the 
Leibniz Supercomputing Center, and on the other 
side, the Max Planck Institute for Plasma Physics 
(among others!) and their computing center. Comple-
mentary expertise in theory, practice, and applica-
tions situated right here, and now we have crossed 
the street. But beyond that, there’s another special 
advantage over other places that have big machines, 
challenging applications, and active research – that 
is the ease with which we can bring in the young 
scientists, for example through TUM’s International 
Graduate School of Science and Engineering and 
our computational methods study programs. 

Going back to the “multi” of multidisciplinarity: It 
is invoked today actually in an inflationary way, but 
I think it’s really true for this group, and it can be 
an especially mind-opening experience for young 
scientists. In your everyday work you can be trapped 
in your discipline. That starts with teaching, with the 
colleagues you typically meet, and with your way 
of thinking. But here we can really bring together 
mathematics with computer science and with the 
applications in physics and engineering, with a great 
scope for different ideas and perspectives. It can be 
difficult to get your mind open in this way if you are 
50 or above – I can say this because I am 49 – and I 
think it’s important that we really put this into re-
searchers’ lives very early. Then you see the mixture 
as a natural thing, and monodisciplinary research as 
more or less the exception. That’s where we should 
be heading, and I think this is a splendid opportunity 
where we can actually live it. ■


