Roundtable Discussion on Quark Masses and α_s

Andreas Kronfeld (moderator) Christine Davies Javad Komijani Alexey Petrov Rainer Sommer Antonio Vairo

Quark Masses

- Is there a "best" definition of quark masses? Or do different applications (e.g., heavy-light vs. quarkonium vs. Higgs BRs) naturally require their own definition(s)?
- A global fit automatically preserves correlations and (perhaps) information about tails of distributions, but can be cumbersome. Are there a ways to capture this information to make such information from the lowenergy observables portable while still quoting *m_b* and *m_c*? For example, some sort of parametrized pdf?

• The relation

$am_{c,lat}$	 $m_{c,\overline{\mathrm{MS}}}$
$am_{b,lat}$	 $m_{b,\overline{\mathrm{MS}}}$

holds for mass-independent schemes. What property of staggered fermions protects its bare mass from power-law effects in a^{-1} and $\Lambda_{\rm QCD}$ (e.g., from renormalons or small instantons)? How do other bare lattice masses fare in this respect?

• How to does the meson-mass sensitivity to Λ (or m_b) and μ_{π}^2 complement determinations from semileptonic decays?

α_s and Perturbation Theory

- In published work relying on perturbation theory at scales such that $\alpha_s \approx 0.2$ –0.3, what tests persuade you that PT works, i.e., that error estimates are robust?
- Given family of renormalized couplings, $\alpha_v(\mu)$, with parameter ν , a decay or scattering amplitude's perturbative series must have expansion coefficients that cancel the ν dependence analogous to the cancellation of μ dependence). It then follows, generically, that choosing ν to make α_v smaller will, at the same time, increase the coefficients (so the sum stays the same, up to next order in α_v). How then can a criterion such as $\alpha_v(\mu) < 0.1$ serve as a general rule of thumb?

 Is there an unbiased, practical way to diagnose a perturbative series—including choices of scheme and renormalization scale—to infer how reliable the series is?