Determination of α_s from the QCD static energy

Antonio Vairo

Technische Universität München

Bibliography

- (1) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination of α_s from the QCD static energy: an update Phys. Rev. D90 (2014) 7, 074038 arXiv:1407.8437
- (2) X. Garcia i Tormo

Review on the determination of α_s from the QCD static energy Mod. Phys. Lett. A28 (2013) 1330028 arXiv:1307.2238

- (3) A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination of α_s from the QCD static energy
 Phys. Rev. D86 (2012) 114031 arXiv:1205.6155
- (4) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo *Precision determination of* $r_0 \Lambda_{\overline{MS}}$ *from the QCD static energy* Phys. Rev. Lett. 105 (2010) 212001 arXiv:1006.2066
- N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo *The QCD static energy at NNNLL* Phys. Rev. D80 (2009) 034016 arXiv:0906.1390
- (6) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo *The logarithmic contribution to the QCD static energy at N⁴LO* Phys. Lett. B647 (2007) 185 arXiv:hep-ph/0610143

$\alpha_{\rm s}$ in 2016

Status of α_s

• Hoang Kolodrubetz Mateu Stewart PRD 91 (2015) 094018

PDG average

In 2015, for the first time in over 20 years, the PDG uncertainty in α_s has increased!

The 2015 PDG average is $\alpha_s(M_Z) = 0.1181 \pm 0.0013$.

• Bethke Dissertori Salam @ PDG2015 and ISMD2015

Static energy

$$E_0(r) = \lim_{T \to \infty} \frac{i}{T} \ln \langle \Box \rangle; \qquad \Box = \exp\left\{ ig \oint dz^{\mu} A_{\mu} \right\}$$

Perturbation theory describes $E_0(r)$ in the short range ($r\Lambda \ll 1$, $\alpha_s(1/r) < 1$):

$$E_0(r) = \Lambda_s - \frac{C_F \alpha_s}{r} (1 + \#\alpha_s + \#\alpha_s^2 + \#\alpha_s^3 + \#\alpha_s^3 \ln \alpha_s + \#\alpha_s^4 \ln^2 \alpha_s + \#\alpha_s^4 \ln \alpha_s + \dots)$$

- $E_0(r)$ is known at three loops.
- $\ln \alpha_s$ signals the cancellation of contributions coming from different energy scales:

$$\ln \alpha_{\rm s} = \ln \frac{\mu}{1/r} + \ln \frac{\alpha_{\rm s}/r}{\mu}$$

• Brambilla Pineda Soto Vairo PRD 60 (1999) 091502

Energy scales

In the short range the static Wilson loop is characterized by a hierarchy of energy scales:

$$1/r \gg V_o - V_s \gg \Lambda;$$
 $V_s \approx -C_F \frac{\alpha_s}{r}, \quad V_o \approx \frac{1}{2N} \frac{\alpha_s}{r}$

Effective Field Theories

EFTs allow the factorization of contributions from different energy scales.

o Brambilla Pineda Soto Vairo NPB 566 (2000) 275

The μ dependence cancels between $V_s \sim \ln r\mu, \ln^2 r\mu, ...$ ultrasoft contribution $\sim \ln(V_o - V_s)/\mu, \ln^2(V_o - V_s)/\mu, ... \ln r\mu, \ln^2 r\mu, ...$

V_A

The first contributing diagrams are of the type:

Therefore

$$V_A(r,\mu) = 1 + \mathcal{O}(\alpha_{\rm s}^2)$$

Chromoelectric field correlator: $\langle E(t)E(0)\rangle$

Is known at two loops.

LO

o Eidemüller Jamin PLB 416 (1998) 415

Static octet potential

$$\lim_{T \to \infty} \frac{i}{T} \ln \frac{\langle \bullet \\ \bullet \\ \langle \phi_{ab}^{\mathrm{adj}} \rangle}{\langle \phi_{ab}^{\mathrm{adj}} \rangle} = \frac{1}{2N} \frac{\alpha_{\mathrm{s}}}{r} (1 + \#\alpha_{\mathrm{s}} + \#\alpha_{\mathrm{s}}^{2} + \#\alpha_{\mathrm{s}}^{3} + \#\alpha_{\mathrm{s}}^{3} \ln \mu r + \dots)$$

Is known at three loops.

• Anzai Prausa A.Smirnov V.Smirnov Steinhauser PRD 88 (2013) 054030

Static singlet potential at N⁴LO

$$\begin{aligned} V_{s}(r,\mu) &= -C_{F} \frac{\alpha_{s}(1/r)}{r} \left\{ 1 + \frac{\alpha_{s}(1/r)}{4\pi} a_{1} + \left(\frac{\alpha_{s}(1/r)}{4\pi}\right)^{2} a_{2} \\ &+ \left(\frac{\alpha_{s}(1/r)}{4\pi}\right)^{3} \left[\frac{16 \pi^{2}}{3} C_{A}^{3} \ln r\mu + a_{3}\right] \\ &+ \left(\frac{\alpha_{s}(1/r)}{4\pi}\right)^{4} \left[a_{4}^{L2} \ln^{2} r\mu + \left(a_{4}^{L} + \frac{16}{9} \pi^{2} C_{A}^{3} \beta_{0}(-5 + 6 \ln 2)\right) \ln r\mu + \dots \right] \\ &+ \cdots \right\} \end{aligned}$$

• Anzai Kiyo Sumino PRL 104 (2010) 112003 A.Smirnov V.Smirnov Steinhauser PRL 104 (2010) 112002

Static energy at N⁴LO

$$E_{0}(r) = \Lambda_{s} - \frac{C_{F}\alpha_{s}(1/r)}{r} \left\{ 1 + \frac{\alpha_{s}(1/r)}{4\pi} \left[a_{1} + 2\gamma_{E}\beta_{0} \right] \right. \\ \left. + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{2} \left[a_{2} + \left(\frac{\pi^{2}}{3} + 4\gamma_{E}^{2} \right) \beta_{0}^{2} + \gamma_{E} \left(4a_{1}\beta_{0} + 2\beta_{1} \right) \right] \right. \\ \left. + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{3} \left[\frac{16\pi^{2}}{3} C_{A}^{3} \ln \frac{C_{A}\alpha_{s}(1/r)}{2} + \tilde{a}_{3} \right] \\ \left. + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{4} \left[a_{4}^{L2} \ln^{2} \frac{C_{A}\alpha_{s}(1/r)}{2} + a_{4}^{L} \ln \frac{C_{A}\alpha_{s}(1/r)}{2} + \dots \right] \right. \\ \left. + \left. \cdots \right\} \right\}$$

Renormalization group equations

$$\begin{cases} \mu \frac{d}{d\mu} V_{s} = -\frac{2}{3} C_{F} \frac{\alpha_{s}}{\pi} r^{2} V_{A}^{2} \left[V_{o} - V_{s} \right]^{3} \left(1 + \frac{\alpha_{s}}{\pi} c \right) \\ \mu \frac{d}{d\mu} V_{o} = \frac{1}{N} \frac{\alpha_{s}}{\pi} r^{2} V_{A}^{2} \left[V_{o} - V_{s} \right]^{3} \left(1 + \frac{\alpha_{s}}{\pi} c \right) \\ \mu \frac{d}{d\mu} V_{A} = 0 \\ \mu \frac{d}{d\mu} \alpha_{s} = \alpha_{s} \beta(\alpha_{s}); \qquad \qquad c = \frac{-5n_{f} + C_{A}(6\pi^{2} + 47)}{108} \end{cases}$$

Static singlet potential and energy at N³LL

$$V_{s}(r,\mu) = V_{s}(r,1/r) - \frac{C_{F}C_{A}^{3}}{6\beta_{0}} \frac{\alpha_{s}^{3}(1/r)}{r} \left\{ \left(1 + \frac{3}{4} \frac{\alpha_{s}(1/r)}{\pi} a_{1}\right) \ln \frac{\alpha_{s}(1/r)}{\alpha_{s}(\mu)} \\ \left(\frac{\beta_{1}}{4\beta_{0}} - 6c\right) \left[\frac{\alpha_{s}(\mu)}{\pi} - \frac{\alpha_{s}(1/r)}{\pi}\right] \right\}$$

Summed to the ultrasoft contribution at two loops, it provides the static energy at N^3LL .

Mass renormalon

The perturbative expansion of V_s is affected by a renormalon ambiguity of order Λ . This ambiguity does not affect the slope of the potential (and the extraction of α_s).

It may be eliminated from the perturbative series

- either by subtracting a (constant) series in α_s to V_s and reabsorb it in a redefinition of the residual mass Λ_s ,
- or by considering the force:

$$F(r, \alpha_{\rm s}(\nu)) = \frac{d}{dr} E_0(r, \alpha_{\rm s}(\nu))$$

- The force $F(r, \alpha_s(1/r))$ could be directly compared with lattice,
- or integrated and compared with the static energy

$$E_0(r) = \int_{r_*}^r dr' \, F(r', \alpha_s(1/r'))$$

up to an irrelevant constant fixed by the overall normalization of the lattice data. Note that there are no $\ln \nu r$ ($\nu =$ renormalization scale).

Lattice

We use 2+1-flavor lattice QCD obtained from tree-level improved gauge action and Highly-Improved Staggered Quark (HISQ) action by the HotQCD collaboration. m_s was fixed to its physical value, while $m_l = m_s/20$.

This corresponds to a pion mass of about 160 MeV in the continuum limit.

β	7.373	7.596	7.825
r_1/a	5.172(34)	6.336(56)	7.690(58)
Volume	$48^3 \times 64$	64^{4}	64^{4}

The largest gauge coupling, $\beta = 7.825$, corresponds to lattice spacings of a = 0.041 fm. • Bazavov et al PRD 90 (2014) 094503

The lattice spacing was fixed using the r_1 scale defined as $r^2 \frac{dE_0(r)}{dr}\Big|_{r=r_1} = 1.0$; $r_1 = 0.3106 \pm 0.0017$ fm from the pion decay constant f_{π} .

• Bazavov et al PoS LATTICE 2010 (2010) 074

Procedure

We use data for each value of the lattice spacing separately, and at the end perform an average of the different obtained values of α_s with the following procedure.

- Perform fits to the lattice data for the static energy $E_0(r)$ at different orders of perturbative accuracy. The parameter of the fits is $\Lambda_{\overline{MS}}$.
- Repeat the above fits for each of the following distance ranges: $r < 0.75r_1$, $r < 0.7r_1$, $r < 0.65r_1$, $r < 0.6r_1$, $r < 0.55r_1$, $r < 0.5r_1$, and $r < 0.45r_1$.
- Use ranges where the reduced χ^2 either decreases or does not increase by more than one unit when increasing the perturbative order, or is smaller than 1.
- To estimate the perturbative uncertainty of the result, repeat the fits
 - by varying the scale in the perturbative expansion, from $\nu=1/r$ to $\nu=\sqrt{2}/r$ and $\nu=1/(\sqrt{2}r),$
 - by adding/subtracting a term $\pm (C_F/r^2)\alpha_s^{n+2}$ to the expression at n loops. Take the largest uncertainty.

Data ranges

χ^{2} /d.o.f. for $\beta = 7.825$

Fits for $r < 0.6r_1$ are acceptable. In the final result we will use only fits for $r < 0.5r_1$. The fitting curve has been normalized on the 7th, 8th and 9th lattice point respectively.

 $a\Lambda_{\overline{\rm MS}}$ at different orders of perturbative accuracy for $\beta = 7.825$

$r_1 \Lambda_{\overline{\mathrm{MS}}}$ at three-loop accuracy

The band shows the determination of 2012.

Statistical error vs perturbative error

The statistical error is estimated by taking values of $\Lambda_{\overline{MS}}$ at one χ^2 unit above minimum.

Analysis with the force

The band shows the determination of 2012.

The counting of the ultrasoft contributions

Leading-ultrasoft resummation included along with the three-loop terms is consistent with the observed size of the terms. This goes in our final result. We chose $\mu = 1.26r_1^{-1} \sim 0.8$ GeV, for the ultrasoft factorization scale. Variations of μ only produce small effects on the results.

Short-distance points vs long-distance points

The band shows the determination of 2012.

Looking for condensates

By repeating the fits adding a monomial term proportional to r^3 and r^2 , which could be associated with gluon and quark local condensates, and also a term proportional to r, we do not find evidence for a significant non-perturbative term at short distances and the value of $\Lambda_{\overline{\rm MS}}$ remains unchanged.

Results

$\Lambda_{\overline{\rm MS}}$

Results at three-loop plus leading-ultrasoft resummation for the $r < 0.5r_1$ fit range. The final result is the weighted average of different β s with linearly added errors.

	$a\Lambda_{\overline{\mathrm{MS}}}; N_{\mathrm{ref}} = 7$	$a\Lambda_{\overline{\mathrm{MS}}}; N_{\mathrm{ref}} = 8$	$a\Lambda_{\overline{\mathrm{MS}}}; N_{\mathrm{ref}} = 9$	$a\Lambda_{\overline{\mathrm{MS}}}$; range spanned	$r_1\Lambda_{\overline{\mathrm{MS}}}$; range spanned
$\beta = 7.373$	$0.0957^{+0.0046}_{-0.0028}$	$0.0957^{+0.0046}_{-0.0028}$	$0.0957^{+0.0046}_{-0.0028}$	$0.0957^{+0.0046}_{-0.0028}$	$0.4949^{+0.0240}_{-0.0144} \pm 0.0086 \pm 0.0025$
	± 0.0017	± 0.0017	± 0.0017	± 0.0017	$= 0.4949_{-0.0170}^{+0.0256}$
$\beta = 7.596$	$0.0781^{+0.0046}_{-0.0029}$	$0.0784^{+0.0043}_{-0.0027}$	$0.0785^{+0.0046}_{-0.0029}$	$0.0783^{+0.0048}_{-0.0031}$	$0.4961^{+0.0303}_{-0.0197}{}^{+0.0066}_{-0.0091} \pm 0.0044$
	± 0.0007	± 0.0010	± 0.0007	± 0.0010	$= 0.4961^{+0.0313}_{-0.0211}$
$\beta = 7.825$	$0.0644_{-0.0019}^{+0.0032}$	$0.0642^{+0.0033}_{-0.0020}$	$0.0643^{+0.0032}_{-0.0020}$	$0.0643^{+0.0033}_{-0.0021}$	$0.4944^{+0.0256}_{-0.0159} \pm 0.0065 \pm 0.0037$
	± 0.0006	± 0.0008	± 0.0008	± 0.0008	$= 0.4944_{-0.0175}^{+0.0267}$
Average					$r_1 \Lambda_{\overline{\rm MS}} = 0.495^{+0.028}_{-0.018}$

 $r_1 \Lambda_{\overline{\text{MS}}} = 0.495^{+0.028}_{-0.018}$ which converts to $\Lambda_{\overline{\text{MS}}} = 315^{+18}_{-12} \text{ MeV}$

Static energy vs lattice data

Perturbation theory agrees with lattice data up to about 0.2 fm.

Static energy at different perturbative orders vs lattice data

Lattice data with β from 6.664 to 7.825 are displayed.

The red error bars correspond to the errors of the lattice data (include normalization).

Force vs lattice data

 $lpha_{\mathbf{s}}$

 $\begin{aligned} &\alpha_{\rm s}(1.5~{\rm GeV},n_f=3)=0.336^{+0.012}_{-0.008}\\ &\text{which corresponds to}\\ &\alpha_{\rm s}(M_Z,n_f=5)=0.1166^{+0.0012}_{-0.0008} \end{aligned}$

from four-loop running, $m_c = 1.6$ GeV and $m_b = 4.7$ GeV.

Comparison with other determinations

o Shintani 2016

Outlook

- Not all of the presently available perturbative information has been used. More
 precise lattice data on finer lattices and with more data points at short distances
 could take advantage of it.
- It would be important, in order to reduce possible systematic effects, to perform the same study on Wilson loops computed on different lattices with different actions.
- A possible systematic effect is due to the finite lattice spacing. A continuum extrapolation would reduce this effect and allow for a precise determination of the force between static charges along the same lines developed by Necco and Sommer (2001) for the quenched case.
- Compute the force directly from the lattice:

$$F(r) = -\lim_{T \to \infty} \frac{\left\langle \operatorname{Tr} \mathbf{P} \, \hat{\mathbf{r}} \cdot g \mathbf{E}(t, \mathbf{r}) \exp\left\{ ig \oint_{r \times T} dz^{\mu} A_{\mu} \right\} \right\rangle}{\left\langle \operatorname{Tr} \mathbf{P} \exp\left\{ ig \oint_{r \times T} dz^{\mu} A_{\mu} \right\} \right\rangle}$$