Muon g-2 Hadronic Light by Light : Latice QCD

Taku Izubuchi (RBC&UKQCD)

Symposium on Effective Field Theories and Lattice Gauge Theory, May 18, 2016, Munich, Germany

Collaborators

HLbL

Tom Blum, Norman Christ, Masashi Hayakawa, Luchang Jin, Chulwoo Jung, Christoph Lehner, ...

 DWF simulations including HVP RBC/UKQCD Collaboration

Part of related calculation are done by resources from USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

Support from US DOE, RIKEN, BNL, and JSPS

$(g-2)_{\mu}$ SM Theory prediction

QED, EW, Hadronic contributions

K. Hagiwara et al., J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

 $a_{\mu}^{\rm SM} = (11 \ 659 \ 182.8 \ \pm 4.9 \) \times 10^{-10}$

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 28.8(6.3)_{\exp}(4.9)_{SM} \times 10^{-10}$$
 [3.6 σ]

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 or more accurate experiment FNAL, J-PARC
- Goal : sub 1% accuracy for HVP, and \rightarrow 10% accuracy for HLbL

Hadronic Light-by-Light

- 4pt function of EM currents
- No experimental data directly help
- Dispersive approach [Peter Stoffer's talk]

$$\Gamma_{\mu}^{(\text{Hlbl})}(p_{2}, p_{1}) = ie^{6} \int \frac{d^{4}k_{1}}{(2\pi)^{4}} \frac{d^{4}k_{2}}{(2\pi)^{4}} \frac{\Pi_{\mu\nu\rho\sigma}^{(4)}(q, k_{1}, k_{3}, k_{2})}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\ \times \gamma_{\nu} S^{(\mu)}(\not p_{2} + \not k_{2}) \gamma_{\rho} S^{(\mu)}(\not p_{1} + \not k_{1}) \gamma_{\sigma} \\ \Pi_{\mu\nu\rho\sigma}^{(4)}(q, k_{1}, k_{3}, k_{2}) = \int d^{4}x_{1} d^{4}x_{2} d^{4}x_{3} \exp[-i(k_{1} \cdot x_{1} + k_{2} \cdot x_{2} + k_{3} \cdot x_{3})] \\ \times \langle 0|T[j_{\mu}(0)j_{\nu}(x_{1})j_{\rho}(x_{2})j_{\sigma}(x_{3})]|0\rangle$$

Form factor:
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2 m_l} F_2(q^2)$$

HLbL from Models

Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9–12) x 10⁻¹⁰ with 25-40% uncertainty

F. Jegerlehner

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
π^0,η,η^\prime	85±13	82.7±6.4	83±12	114±10	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	—	0 ± 10	-19 ± 19	-19 ± 13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	_	22 ± 5	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	_	—	-7 ± 7	-7 ± 2
quark loops	21±3	9.7±11.1	-	_	2.3	21 ± 3
total	83±32	89.6±15.4	80±40	136±25	105 ± 26	116±39

Direct 4pt calculation for selected kinematical range

- Jeremy Green arXiv: 1507.01577
- Compute connected contribution of 4 pt function in momentum space
- forward amplitudes related to $\gamma * \gamma * ->$ hadron cross section via dispersion relation

FIG. 3. The forward scattering amplitude $\mathcal{M}_{\rm TT}$ at a fixed virtuality $Q_1^2 = 0.377 {\rm GeV}^2$, as a function of the other photon virtuality Q_2^2 , for different values of ν . The curves represent the predictions based on Eq. (10), see the text for details.

[Panel discussion]

Our Basic strategy : Lattice QCD+QED system [G. Schierholz's talk]

- 4pt function has too much information to parameterize (?)
- Do Monte Carlo integration for QED two-loop with 4 pt function π⁽⁴⁾ which is sampled in lattice QCD
- Photon & lepton part of diagram is derived either in lattice QED+QCD [Blum et al 2014] (stat noise from QED), or exactly derive for given loop momenta [L. Jin et al 2015] (no noise from QED+lepton).

$$\Gamma_{\mu}^{(\text{Hlbl})}(p_2, p_1) = ie^6 \int \frac{d^4k_1}{(2\pi)^4} \frac{d^4k_2}{(2\pi)^4} \Pi_{\mu\nu\rho\sigma}^{(4)}(q, k_1, k_2, k_3) \times [S(p_2)\gamma_{\nu}S(p_2 + k_2)\gamma_{\rho}S(p_1 + k_1)\gamma_{\sigma}S(p_1) + (\text{perm.})]$$

- set spacial momentum for

 external EM vertex q
 in- and out- muon p, p'
 - q = p-p'
- set time slice of muon source(t=0), sink(t') and operator (t_{op})
- take large time separation for ground state matrix element

QCD+QED method [Blum et al 2015]

Coordinate space Point photon method

[Luchang Jin et al., arXiv:1510.07100]

Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected :

disconnected problem in Lattice QED+QCD -> connected problem with analytic photon

QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location x,y, z and x_{op} is summed over space-time exactly

- Short separations, Min[|x-z|, |y-z|, |x-y|] < R ~ O(0.5) fm, which has a large contribution due to confinement, are summed for all pairs</p>
- longer separations, Min[|x-z|, |y-z|, |x-y|] >= R, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

Conserved current & moment method

[conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

■ [moment method, q2→0] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, q->0 limit value is directly computed via the first moment of the relative coordinate, xop - (x+y)/2, one could show $\sum_{x_{op},\mu} x_{op}$

$$\frac{\partial}{\partial q_i} \mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} = i \sum_{x,y,z,x_{\rm op}} (x_{\rm op} - (x+y)/2)_i \times$$

to directly get $F_2(0)$ without extrapolation.

Form factor :
$$\Gamma_{\mu}(q) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2 m_l} F_2(q^2)$$

Dramatic Improvement ! Luchang Jin

M_{π} =170 MeV cHLbL result [Luchang Jin et al. , arXiv:1510.07100]

- $V = (4.6 \text{ fm})^3$, a = 0.14 fm, m_u=130 MeV, 23 conf
- pair-point sampling with AMA (1000 eigV, 100CG) , > 6000 meas/conf
 - |x-y| <= 5, all pairs, x2-5 samples for shorter distances,
 217 pairs (10 AMA-exact)
 - |x-y| > 5, 512 pairs (48 AMA-exact)
- 13.2 BG/Q Rack-days

M_{π} =170 MeV cHLbL result (contd.)

"Exact" ... q = 2pi / L,

"Conserved (current)" ... q=2pi/L, 3 diagrams "Mom" ... moment method q->0, with AMA

Method	$F_2/(\alpha/\pi)^3$	$N_{\rm conf}$	$N_{ m prop}$	\sqrt{Var}	$r_{\rm max}$	SD	LD	ind-pair
Exact	0.0693(218)	47	$58 + 8 \times 16$	2.04	3	-0.0152(17)	0.0845(218)	0.0186
Conserved	0.1022(137)	13	$(58 + 8 \times 16) \times 7$	1.78	3	0.0637(34)	0.0385(114)	0.0093
Mom. (approx)) 0.0994(29)	23	$(217+512) \times 2 \times 4$	1.08	5	0.0791(18)	0.0203(26)	0.0028
Mom. (corr)	0.0060(43)	23	$(10+48) \times 2 \times 4$	0.44	2	0.0024(6)	0.0036(44)	0.0045
Mom. (tot)	0.1054(54)	23						

physical M_{π} =140 MeV cHLbL result [Luchang Jin et al., preliminary]

- V= $(5.5 \text{ fm})^3$, a = 0.11 fm, m_µ=106 MeV, 69 conf [RBC/UKQCD]
- Two stage AMA (2000 eigV, 200CG and 400 CG) using zMobius, ~4500 meas/conf
- 160 BG/Q Rack-days

 $\frac{(g_{\mu}-2)_{\rm cHLbL}}{2} = (0.933 \pm 0.0073)(\alpha/\pi)^3 = (116.9 \pm 9.1) \times 10^{-11}$ (preliminary, stat err only)

Disconnected diagrams in HLbL

Disconnected diagrams

Disconnected HLbL would be non-negligible

The major contribution, single pi0 (and η , η ') exchange diagrams through 2 $\gamma \rightarrow \pi 0$, would have both connected and disconnected contributions.

- A quark model consideration for LbL pi0 exchange turns out to be Con : DisCon roughly same size with opposite sign (L. Jin)
- Good news : it's not η ' (only), so S/N would not grow exponentially with the propagation length.
- Bad news : it's disconnected quark loops, and many of them.

SU(3) hierarchies for dHLbL

- At m_s=m_{ud} limit, following type of dHLbL survives due to Qu + Qd + Qs = 0
- Physical point run is in progress using similar techniques to cHLbL.
 preliminary result
 - a negative value with ~30% stat err !
- $O(m_s m_{ud}) / 3$ and $O((m_s m_{ud})^2)$

Systematic errors

Missing disconnected diagrams \rightarrow compute them

Finite volume

Discretization error

 \rightarrow a scaling study for 1/a = 2.7 GeV, 64 cube lattice at physical quark mass is proposed to ALCC at Argonne

Systematic effects in QED only study

- muon loop, muon line
- $a = a m_{\mu} / (106 \text{ MeV})$
- L= 11.9, 8.9, 5.9 fm

known result : F2 = 0.371 (diamond) correctly reproduced (good check)

FV and discretization error could be as large as 20-30 %, similar discretization error seen from QCD+QED study

QCD box in QED box

- FV from quark is exponentially suppressed ~ exp($M_{\pi} L_{QCD}$)
- Dominant FV effects would be from photon
- Let photon and muon propagate in larger (or infinite) box than that of quark

 We could examine different lepton/photon in the off-line manner e.g. QED_L (Hayakwa-Uno 2008) with larger box, Twisting Averaging [Lehner TI LATTICE14] or Infinite Vol. Photon propagators [C. Lehner, L.Jin, TI LATTICE15]

QED box in QCD box (contd.)

Mπ=420 MeV, mµ=330 MeV, 1/a=1.7 GeV

• $(16)^3 = (1.8 \text{ fm})^3 \text{ QCD box in } (24)^3 = (2.7 \text{ fm})^3 \text{ QED box}$

Summary

- Connected HLbL calculation is improved very rapidly
- Many orders of magnitudes improvements
 - coordinate-space integral using analytic photon propagator with adaptive probability (point photon method)
 - config-by-config conserved external current
 - take moment of relative coordinate to directly take $q \rightarrow 0$
 - AMA
 - \rightarrow 8 % stat. error at physical point

(preliminary, stat err only)

$$\frac{(g_{\mu}-2)_{\rm cHLbL}}{2} = (0.933 \pm 0.0073)(\alpha/\pi)^3 = (116.9 \pm 9.1) \times 10^{-11}$$

- SU(3) unsuppressed disconnected diagram has signal also at physical point
- Still large systematic errors (missing disconnected, FV, discretization error, ...)
- Goal : 10% error

Future plans

- (discretization error) Nf=2+1 DWF/ Mobius ensemble at physical point, L=5.5 fm, a=0.083 fm, (64)³ at ALCC
 @Argonne started to run
- (FV study) QCD box in QED box at physical point
- Disconnected diagrams

Backup slides / for discussion

interplays between dispersive approach and Lattice

- g-2 HVP
- Vus from strangeness τ inclusive decay

(plan B) Interplays between lattice and dispersive approach g-2

Dispersive approach from R-ratio R(s)

$$\hat{\Pi}(Q^2) = \frac{Q^2}{3} \int_{s_0} ds \frac{R(s)}{s(s+Q^2)}$$

Relative Err of Pihat (Q^2)

also [ETMC, Mainz, ...]

- Can we combine dispersive & lattice and get more precise (g-2)HVP than both ? [2011 Bernecker Meyer]
- Inverse Fourier trans to Euclidean vector correlator
- Relevant for g-2 $Q^2 = (m_{\mu}/2)^2 = 0.0025 \text{ GeV}^2$
- It may be interesting to think

$$\frac{\hat{\Pi}(Q^2)}{Q^2} = \left[\frac{\hat{\Pi}(Q^2)}{Q^2} - \frac{\hat{\Pi}(P^2)}{P^2}\right]^{\text{Exp}} + \left[\frac{\hat{\Pi}(P^2)}{P^2}\right]^{\text{Lat}}$$

V_{us} extraction strangeness tau inclusive decay

 $\begin{array}{l} {\sf K}_{13} \text{ decays, PDG 2013} \\ 0.2253 \pm 0.0014 \\ {\sf K}_{12} \text{ decays, PDG 2013} \\ 0.2253 \pm 0.0010 \\ \\ {\sf CKM unitarity, PDG 2013} \\ 0.2255 \pm 0.0010 \\ \\ \tau \rightarrow s \text{ inclusive, HFAG 2014} \\ 0.2176 \pm 0.0021 \\ \\ \tau \rightarrow {\sf Kv} \ / \ \tau \rightarrow \pi v, \text{HFAG 2014} \\ 0.2232 \pm 0.0019 \\ \\ \tau \rightarrow {\sf Kv}, \text{HFAG 2014} \\ 0.2212 \pm 0.0020 \\ \\ \tau \text{ average, HFAG 2014} \\ 0.2204 \pm 0.0014 \end{array}$

Tau decay

- $\tau \rightarrow \nu + had$ through V-A vertex
- Apply the optical theorem to related to VV and AA hadronic vacuum polarization (HVP)
- For hadrons with strangeness -1, CKM matrix elements V_{us} is multiplied
- ν takes energy away, makes differential cross section is related to the HVPs (c.f. in e^+e^- case, the total cross section is directly related to HVP)

$$R_{ij} = \frac{\Gamma(\tau^- \to \operatorname{hadrons}_{ij} \nu_{\tau})}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})}$$

$$= \frac{12\pi |V_{ij}^2| S_{EW}}{m_{\tau}^2} \int_0^{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right) \underbrace{\left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im}\Pi^{(1)}(s) + \operatorname{Im}\Pi^{(0)}(s)\right]}_{\equiv \operatorname{Im}\Pi(s)}$$

• The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) current-current two point

$$\Pi^{\mu\nu}_{ij;V/A}(q^2) = i \int d^4x e^{iqx} \left\langle 0 | T J^{\mu}_{ij;V/A}(x) J^{\dagger\mu}_{ij;V/A}(0) | 0 \right\rangle$$
$$= (q^{\mu}q^{\nu} - q^2 g^{\mu\nu}) \Pi^{(1)}_{ij;V/A}(q^2) + q^{\mu}q^{\nu}\Pi^{(0)}_{ij;V/A}$$

Finite Energy Sum Rule (FESR)

- Do the finite radius contour integral
- Real axis integral from experimental $R_{ au}$
- Use pQCD and OPE for the large circle integral
- Any analytic weight function w(s)

$$\int_{s_{th}}^{s_0} \mathrm{Im}\Pi(s) w(s) = \frac{i}{2} \oint_{|s|=s_0} ds \Pi(s) w(s)$$

Combining FESR and Lattice

• If we have a reliable estimate for $\Pi(s)$ in Euclidean (space-like) points, $s = -Q_k^2 < 0$, we could extend the FESR with weight function w(s) to have poles there,

$$\begin{split} \int_{s_{th}}^{\infty} w(s) \mathrm{Im}\Pi(s) &= \pi \sum_{k}^{N_p} \mathrm{Res}_k [w(s)\Pi(s)]_{s=-Q_k^2} \\ \Pi(s) &= \left(1 + 2\frac{s}{m_\tau^2}\right) \mathrm{Im}\Pi^{(1)}(s) + \mathrm{Im}\Pi^{(0)}(s) \propto s \ (|s| \to \infty) \end{split}$$

• For $N_p \geq 3$, the $|s| \rightarrow \infty$ circle integral vanishes.

weight function w(s)

• Example of weight function

$$w(s) = \prod_{k}^{N_{p}} \frac{1}{(s+Q_{k}^{2})} = \sum_{k} a_{k} \frac{1}{s+Q_{k}^{2}}, \quad a_{k} = \sum_{j \neq k} \frac{1}{Q_{k}^{2}-Q_{j}^{2}}$$
$$\implies \sum_{k} (Q_{k})^{M} a_{k} = 0 \quad (M = 0, 1, \cdots, N_{p} - 2)$$

- The residue constraints automatically subtracts $\Pi^{(0,1)}(0)$ and $s\Pi^{(1)}(0)$ terms.
- For experimental data, $w(s) \sim 1/s^n, n \geq 3$ suppresses
 - \triangleright larger error from higher multiplicity final states at larger $s < m_{\tau}^2$
 - \triangleright uncertanties due to pQCD+OPE at $m_{ au}^2 < s$
- For lattice, Q_k^2 should be not too small to avoid large stat. error, $Q^2 \rightarrow 0$ extrapolation, Finite Volume error(?). Also not too larger than m_{τ}^2 to make the suppression in time-like $0 < s < m_{\tau}^2$ working.
- Other w(s) could be useful to enhance some region s > 0 which may be usable for $(g-2)_{\mu}$ HVP (?)
- c.f. HPQCD's HVP moments works

All our results (C<1, N=3,4) are consistent with each other.

Note : Other systematic errors of sea quark mass chiral extrapolation, lattice O(a^4) discretization,

and higher order OPE have not been included. These must be assessed in a future study.

AMA+MADWF(fastPV)+zMobius accelerations

 We utilize complexified 5d hopping term of Mobius action [Brower, Neff, Orginos], zMobius, for a better approximation of the sign function.

$$\epsilon_L(h_M) = \frac{\prod_s^L (1 + \omega_s^{-1} h_M) - \prod_s^L (1 - \omega_s^{-1} h_M)}{\prod_s^L (1 + \omega_s^{-1} h_M) + \prod_s^L (1 - \omega_s^{-1} h_M)}, \quad \omega_s^{-1} = b + c \in \mathbb{C}$$

1/a~2 GeV, Ls=48 Shamir ~ Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s complex varying) ~5 times saving for cost AND memory

Ls	eps(48cube) – eps(zMobius)
6	0.0124
8	0.00127
10	0.000110
12	8.05e-6

 The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of condition number due to order of magnitudes hierarchy of b_s, c_s [also Neff found this]

sym2:
$$1 - \kappa_b M_4 M_5^{-1} \kappa_b M_4 M_5^{-1}$$

- Fast Pauli Villars (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D [Edward, Heller]
- All in all, sloppy solve compared to the traditional CG is <u>160 times</u> faster on the physical point 48 cube case. And ~<u>100 and 200 times</u> for the 32 cube, Mpi=170 MeV, 140, in this proposal (1,200 eigenV for 32cube).

$$\underbrace{\frac{20,000}{600}}_{\text{MADWF+zMobius+deflation}} \times \underbrace{\frac{600 * 32/10}{300}}_{\text{AMA+zMobius}} = 33.3 \times 6.4 = \underline{210 \text{ times faster}}$$

Examples of Covariant Approximations (contd.)

All Mode Averaging AMA Sloppy CG or Polynomial approximations $\mathcal{O}^{(\mathrm{appx})} = \mathcal{O}[S_l],$ $S_l = \sum v_{\lambda} f(\lambda) v_{\lambda}^{\dagger},$ $f(\lambda) = \begin{cases} \frac{1}{\lambda}, & |\lambda| < \lambda_{\text{cut}} \\ P_n(\lambda) & |\lambda| > \lambda_{\text{cut}} \end{cases}$ $P_n(\lambda) \approx \frac{1}{\lambda}$

If quark mass is heavy, e.g. ~ strange, low mode isolation may be unneccesary

- low mode part : # of eig-mode
- mid-high mode : degree of poly.