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Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD
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(g-2)���SM Theory prediction�

n  QED, EW, Hadronic contributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n  Discrepancy between EXP and SM is larger than EW! 
n  Currently the dominant uncertainty comes from HVP, followed by HLbL 

n  x4 or more accurate experiment  FNAL , J-PARC 
n  Goal :  sub 1% accuracy for HVP, and  

           �  10% accuracy for HLbL 

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
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K.	Hagiwara	et	al.	,	J.	Phys.	G:	Nucl.	Part.	Phys.	38	(2011)	085003�

[C.	Lehner’s	talk]�



Hadronic Light-by-Light�

n  4pt function of EM currents 
n  No experimental data directly help 
n  Dispersive approach [ Peter Stoffer’s talk ] 

EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
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EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :
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HLbL from Models�
n  Model estimate with non-perturbative 

constraints at the chiral / low energy limits 
using anomaly :  (9—12) x 10-10  with 25-40% 
uncertainty�

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

My own calculation: h3 ⌅ [�10, 10] GeV�2

X aµ(LbL; X) ⇥ 1011

⇥0, �, �⇤ 93.91 ± 12.40 a1, f ⇤1, f1 28.13 ± 5.63 a0, f ⇤0, f0 �5.98 ± 1.20

JN09 based on Nyffeler 09:

aLbL;had
µ = (116 ± 39) ⇥ 10�11

Summary of results
Contribution BPP HKS KN MV PdRV N/JN

⇥0, �, �⇤ 85±13 82.7±6.4 83±12 114±10 114±13 99±16
⇥,K loops �19±13 �4.5±8.1 � 0±10 �19±19 �19±13

axial vectors 2.5±1.0 1.7±1.7 � 22± 5 15±10 22± 5
scalars �6.8±2.0 � � � �7± 7 �7± 2

quark loops 21± 3 9.7±11.1 � � 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 105±26 116±39

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 92

F.	Jegerlehner�



Direct 4pt calculation for selected 
kinematical range�

n  Jeremy Green  arXiv: 1507.01577 
n  Compute connected contribution of 4 pt function in momentum space 
n  forward amplitudes related to �*�*-> hadron cross section via dispersion 

relation 3
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FIG. 3. The forward scattering amplitude M
TT

at a fixed
virtuality Q2

1

= 0.377GeV2, as a function of the other photon
virtuality Q2

2

, for di↵erent values of ⌫. The curves represent
the predictions based on Eq. (10), see the text for details.

for some fixed functions f

1,2

and all values of {µ
a

}
and X

4

. The contact terms are present when two or
three lattice conserved currents coincide, and serve to
ensure that the conserved-current relations hold, e.g.,

�(X4)
µ4 ⇧lat

µ1µ2µ3µ4
= 0, where �(X)

µ

is the backward lat-
tice derivative.

The fully-connected contribution to Eq. (12) is evalu-
ated using the method of sequential propagators. First,
a point-source propagator is computed from X

3

. Then,
it is combined with the function f

1

or f

2

to form the
source for a new (sequential) propagator. These sequen-
tial propagators are then used to form sources for double-
sequential propagators that depend on both f

1

and f

2

.
Finally, the fully-connected contraction is formed using
all three kinds of propagators; this is illustrated in Fig. 2.
For generic complex f

1

and f

2

, this requires one point-
source, 16 sequential and 32 double-sequential propaga-
tors, although these counts can be reduced in various spe-
cial cases. We have verified that in our implementation
the four-point function matches the lattice perturbation
theory calculation if the gauge link variables are set to
unity, and that the conserved-current conditions hold on
each gauge configuration.

For evaluating the momentum-space correlator, we set
the functions to be plane waves, f

a

(X) = e

�iPa·X and
compute the Fourier modes with respect to X

4

. Thus,
⇧E

µ1µ2µ3µ4
(P

4

;P
1

, P

2

) can be evaluated e�ciently at fixed
P

1,2

for all P
4

available on the lattice.

FIG. 4. The dependence of the amplitude M
TT

on ⌫, both
photon virtualities being fixed at 0.377 GeV2, at three dif-
ferent pion masses. The dashed and dotted curves show the
⇡0 and ⇡0 + ⌘0 contributions (there is no ⌘ meson in two-
flavor QCD), the solid curve includes all single-meson and
⇡+⇡� contributions, and the dash-dotted curves additionally
include the high-energy contribution for the case of real pho-
tons at the physical pion mass.

IV. RESULTS

We have used three lattice QCD ensembles with two
degenerate flavors of non-perturbatively O(a) improved
Wilson quarks and a plaquette gauge action. The en-
sembles are at a single lattice spacing a = 0.063fm [16],
correspond to pion masses m

⇡

= 451, 324 and 277MeV,
and are respectively of spatial linear size 32, 48 and 48,
the time direction being twice as long; see [17] for more
details. Only the up and down quark contributions to
the electromagnetic current are included. The local vec-
tor current J

l

µ

is renormalized non-perturbatively [18].
The results shown here were obtained using fairly low
statistics, with a maximum of 300 samples.
Due to the finite volume of the lattice, the momenta

take discrete values. The subtracted forward scatter-
ing amplitude, M

TT

(�Q

2

1

,�Q

2

2

, ⌫)�M
TT

(�Q

2

1

,�Q

2

2

, 0)
(which is even in ⌫), is obtained by linearly interpolating
the second term between the available Q

2

2

to match the
first term. It is shown in Fig. 3 at fixed pion mass and
fixed Q

2

1

, and also in Fig. 4 with both photon virtualities
fixed. For the latter, linear interpolation in Q

2

2

was also
used in the first term, except for the points at maximal
⌫. At fixed ⌫, the amplitude tends to decrease as the
virtualities are increased, at fixed virtualities it tends to
increase with |⌫|, and at fixed kinematics we do not find
a significant dependence on the pion mass.

We compare the lattice data with results from the sum
rule, Eq. (10), using a phenomenological model for the
transverse �

⇤
�

⇤ ! hadrons cross section, �
0

+ �

2

, based
on Ref. [8]. We include pseudoscalar, scalar, axial-vector,
and tensor mesons, as well as ⇡

+

⇡

� states [19] (using
scalar QED dressed with form factors). The �

⇤
�

⇤ !
meson form factors have not been measured experi-

2

conventional notation, we have

Mforw

µ1µ2µ3µ4
(q

1

, q

2

) ⌘ M
µ1µ2µ3µ4(q1, q2 ! q

1

, q

2

) (5)

= e

4 (�i⇧
µ1µ3µ4µ2(�q

2

;�q

1

, q

1

)).

The forward scattering amplitude can be decomposed
into eight Lorentz-invariant amplitudes [11]. They are
functions of the virtualities q2

1

and q

2

2

of the photons, as
well as of the variable ⌫ ⌘ q

1

· q
2

. Using the projector
R

µ⌫ onto the subspace orthogonal to q

1

and q

2

, we focus
here on the amplitude [12]

M
TT

(q2
1

, q

2

2

, ⌫) =
1

4
R

µ1µ3
R

µ2µ4Mforw

µ1µ2µ3µ4
(q

1

, q

2

). (6)

Combining Eqs. (5) and (3), we can access the amplitude
M

TT

from the Euclidean correlator,

M
TT

(�Q

2

1

,�Q

2

2

,�Q

1

· Q
2

) (7)

=
e

4

4
R

E

µ1µ3
R

E

µ2µ4
⇧E

µ1µ3µ4µ2
(�Q

2

;�Q

1

, Q

1

),

R

E

µ⌫

⌘ �

µ⌫

� 1

(Q
1

· Q
2

)2 � Q

2

1

Q

2

2

· (8)

h
(Q

1

· Q
2

)(Q
1µ

Q

2⌫

+Q

1⌫

Q

2µ

)

�Q

2

1

Q

2µ

Q

2⌫

� Q

2

2

Q

1µ

Q

1⌫

i
.

The largest value of |⌫| that can be reached with Eu-
clidean kinematics is limited by the virtualities of the
photons [13], |⌫|  (Q2

1

Q

2

2

)1/2  1

2

(Q2

1

+Q

2

2

) ⌘ ⌫

0

, while
the nearest singularity is the s-channel ⇡0 pole located
at ⌫

⇡

= 1

2

(m2

⇡

+ Q

2

1

+ Q

2

2

). A technical issue arises
when Q

1

and Q

2

are collinear: the projector R

E

µ⌫

be-
comes ambiguous. To resolve the issue, we note that
R

E

µ⌫

= R

µ⌫

� U

1µ

U

1⌫

, where R

µ⌫

⌘ �

µ⌫

� Q

1µ

Q

1⌫

/Q

2

1

and U

1

is the unit vector parallel to the projection of
Q

2

onto the subspace orthogonal to Q

1

. The average of
the applied projector over the directions of U

1

in that
subspace yields

hhRE

µ1µ3
R

E

µ2µ4
ii

U1 = 2

5

R

µ1µ3Rµ2µ4 (9)

+ 1

15

⇣
R

µ1µ2Rµ3µ4 +R

µ1µ4Rµ3µ2

⌘
.

We use this averaged projector in Eq. (7) when Q

1

and
Q

2

are collinear.
In [8], it was shown that the HLbL amplitude M

TT

(⌫),
for fixed spacelike photon virtualities, can be obtained
from the following dispersive sum rule,

M
TT

(q2
1

, q

2

2

, ⌫) � M
TT

(q2
1

, q

2

2

, 0) (10)

=
2⌫2

⇡

Z 1

⌫0

d⌫

0
p

⌫

02 � q

2

1

q

2

2

⌫

0(⌫02 � ⌫

2 � i✏)
(�

0

+ �

2

)(⌫0),

where �

0

and �

2

are the total cross sections
�

⇤(q 2

1

)�⇤(q 2

2

) ! hadrons with total helicity 0 and 2 re-
spectively. It can be shown [8] that M

TT

vanishes at
⌫ = 0 if either of the photons is real. It is interesting to
test the sum rule for the ⇡0 pole contribution. Using the

FIG. 1. Four-point function quark contraction topologies.
The vertices represent vector currents and the lines are quark
propagators. In this work, we compute only the leftmost,
fully-connected class of diagrams.

1X X2

X4

1X X2

X4

1X X2

X40 0 0

FIG. 2. Fully-connected four-point function quark contrac-
tions. Each panel represents two contractions with oppo-
site directions of quark flow. The solid quark lines are com-
puted using a point-source propagator, the dashed lines using
sequential propagators, and the dotted lines using double-
sequential propagators.

expression for ⇧
µ⌫⇢�

given in [14] and Eqs. (5, 6), one
finds

M⇡

0

TT

(�Q

2

1

,�Q

2

2

, ⌫) = e

4 (⌫2 � Q

2

1

Q

2

2

) (11)

F(�Q

2

1

,�Q

2

2

)2
Q

2

1

+Q

2

2

+m

2

⇡

(Q2

1

+Q

2

2

+m

2

⇡

)2 � 4⌫2

with F(q2
1

, q

2

2

) the pion transition form factor as defined
in [14]. For q2

2

= 0, the same result is obtained from the
sum rule, using the expression for the ��

⇤ ! ⇡

0 cross-
section given in [8].
In summary, the amplitude M

TT

can be computed on
the lattice via Eq. (7) and from e

+

e

� collider data via
Eq. (10). In the following, we present a comparison of
the two approaches.

III. IMPLEMENTATION OF THE EUCLIDEAN
FOUR-POINT FUNCTION IN LATTICE QCD

In numerical lattice QCD calculations of n-point func-
tions, the quark path integral is evaluated analytically to
yield a sum of contractions of quark propagators. For the
four-point function of vector currents, these fall into five
distinct topologies, illustrated in Fig. 1. In this work, we
compute only the six contractions that are fully quark-
connected.
We use a Wilson-type quark action, three lattice con-

served currents Jc

µ

and one site-local current J l

µ

(see for
instance [15] for an explicit definition). Generically, we
evaluate the fully-connected contribution to

⇧lat

µ1µ2µ3µ4
(X

4

; f
1

, f

2

) ⌘
X

X1,X2

f

1

(X
1

)f
2

(X
2

)

hJc

µ1
(X

1

)Jc

µ2
(X

2

)J l

µ3
(0)Jc

µ4
(X

4

) + contact termsi, (12)

[	Panel	discussion	]�



Our Basic strategy :  
Lattice QCD+QED system [ G. Schierholz’s talk]  

�n  4pt function has too much information to parameterize (?)  
n  Do Monte Carlo integration for QED two-loop with 4 pt function π(4) which  

is sampled in lattice QCD 
n  Photon & lepton part of diagram is derived either in lattice QED+QCD 

[Blum et al 2014] (stat noise from QED), or exactly derive for given loop 
momenta [L. Jin et al 2015] (no noise from QED+lepton).�

l  set	spacial	momentum	for		
			-	external	EM	vertex	q	

			-	in-	and	out-		muon	p,	p’	
								q	=	p-p’	
	
•  set	/me	slice	of	muon		

source(t=0),		sink(t’)	and	operator	(top)	
	
•  take	large	/me	separa/on	for	
ground	state	matrix	element�

✕

(0,	p)� (t’,	p’)�

(top,	q)�

muon�

3	photons�



Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

* quark +

QCD+quenched QEDA

�
*

quark

+

QCD+quenched QEDB

* +

quenched QEDA

= 3⇥

xsrc xsnk
y

0
, �

0
z

0
, ⌫

0
x

0
, ⇢

0

xop, µ

z, ⌫

y, � x, ⇢

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1

0

0.1

0.2

0.3

0.4

F 2((
2π

/L
)2 )

QED (mloop=m
µ
=0.1, 243)

QED, (mloop=m
µ
=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (m

π
=330 MeV)

hadronic models, F2(0)

quark-connected part of HLbL

a�1 = 1.7848 GeV, (2.7 fm)3

m
⇡

= 330 MeV, m
µ

= 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(↵2) noise, O(↵4) corrections

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

QCD+QED method [Blum et al 2015]�
2

FIG. 2. Two classes of diagrams contributing to aµ(HLbL).
On the left, all QED vertices lie on a single quark loop, The
right diagram is one of six diagrams where QED vertices are
distributed over two (or three) quark loops.

the vacuum expectation value of an operator involving
quark fields requires the inversion of the quark Dirac op-
erator Dmq

[

UQCD
]

for each gluon field (QCD configu-
ration), UQCD. The cost of inversion of this operator
for every pair of source and sink points on the lattice
is prohibitive since it requires solving the linear equa-
tion Dmq

[

UQCD
]

xr = br for Nsites number of sources,
br, where Nsites is the total number of lattice points. In
most problems, such as hadron spectroscopy, all of these
inversions are not necessary. For our problem, the corre-
lation of four electromagnetic currents must be computed
for all possible values of two independent four-momenta.
This implies (3 × 4 × Nsites)2 separate inversions, per
QCD configuration, quark species, and four-momentum
of the external photon to calculate the connected diagram
in Fig. 2, which is astronomical. Therefore, a practical
method with substantially less computational cost is in-
dispensable.
A non-perturbative QCD+QED method which treats

the photons and muon on the lattice along with the
quarks and gluons has been proposed as such a candi-
date by us. To obtain the result for the diagram in Fig. 2
the following quantity is computed [9],

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL

= −
∑

q=u,d,s

(Qqe)
2
∑

k

{〈

γµSq(top,−q; k)γνSq(k; top,−q)

δνρ

k̂2
G(t′,p′;−k)γρG(−k; 0,−p)

〉

QCD+QED

−⟨γµSq(top,−q; k)γνSq(k; top,−q)⟩QCD+QED

δνρ

k̂2
⟨G(t′,p′;−k)γρG(−k; 0,−p)⟩QED

}

, (1)

where ψ annihilates the state with muon quantum num-
bers, and jµ is the electromagnetic current 1 for the
quarks. k is a Euclidean four-momentum, p is a three-
momentum, each quantized in units of 2π/L. δµν/k̂2

(k̂µ ≡ 2 sin(kµ/2)) is the lattice photon propagator in

1 The point-split, exactly conserved, lattice current is used for the
internal vertices while the local current is inserted at the external
vertex.

FIG. 3. Perturbative expansion of the first term in Eq. (1)
with respect to QED. The symbols ⟨, ⟩QCD+q-QED and
⟨, ⟩q-QED represent the average over QCD+QED configura-

tions (UQCD, AQED) and that over AQED, respectively. Terms
represented by the ellipsis contain four or more internal pho-
tons and so their orders are higher than α3.

Feynman gauge. Sq and G denote Fourier transforma-
tion of D−1

mq
and D−1

mµ
, respectively, and spin and color

indices have been suppressed. One takes t′ ≫ top ≫ 0 to
project onto the muon ground state

lim
t′≫top≫0

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL =

⟨0|ψ(0,p′)|p′, s′⟩
2E′V

⟨p′, s′|Γµ|p, s⟩
⟨p, s|ψ(0,p)|0⟩

2EV

×e−E′(t′−top)e−Etop , (2)

where the matrix element of interest is parametrized as

⟨p′, s′|Γµ|p, s⟩ ≡

ū(p′, s′)

(

F1(q
2)γµ + i

F2(q2)

2mµ
[γµ, γν ]qν

)

u(p, s). (3)

u(p, s) is a Dirac spinor, and q = p′ − p is the space-like
four-momentum transferred by the photon. To extract
the form factors F1 and F2, Eq. (1) is traced over spins
after multiplication by one of the projectors, (1 + γt)/4
or i (1 + γt)γjγk/4, where j, k = x, y, z and k ̸= j. The
contribution to the anomaly is then found from aµ ≡
(gµ − 2)/2 = F2(0).
For now quenched QED (q-QED) is used for the QED

average in (1), implying no fermion-antifermion pair cre-
ation/annihilation via the photon. Note that only the
sea quarks need to be charged under U(1); the lepton
vacuum polarization corresponds to higher order contri-
butions which we ignore. This approximation was cho-
sen to make this first calculation computationally easier,
even though it is incomplete. We can remove it to get
the complete physical result, as discussed at the end of
this letter. The first term, expanded in q-QED, can be
reorganized as in Fig. 3, according to the number of pho-
tons exchanged between the quark loop and the open
muon line. If the second term in Eq. (1) is subtracted,
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n  Treat all 3 photon propagators exactly   (3 analytical photons) , which makes the 
quark loop and the lepton line connected :   
   disconnected problem in Lattice QED+QCD  -> connected problem with analytic 
photon 

n  QED 2-loop in coordinate space. Stochastically sample, two of quark-photon 
vertex location x,y, z and xop is summed over space-time exactly 

 
 
 

n  Short separations, Min[ |x-z|,|y-z|,|x-y| ] < R ~ O(0.5) fm, which has a large 
contribution due to confinement, are summed for all pairs 

n  longer separations, Min[ |x-z|,|y-z|,|x-y| ]  >= R,  are done stochastically with 
a probability shown above  ( Adaptive Monte Carlo sampling ) 
 

 
n  All lepton and photon part produce  no noise for given x,y  ( Ls = ∞ DWF muon ) 
     
 
 
 

Coordinate space Point photon method  
[ Luchang Jin et al. , arXiv:1510.07100 ]�
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Figure 3. Distribution of the r for 32ID lattice.

For simplicity, we only write local current in above formulas. In actual computation,

however, we need to compute lattice conserved current at xop to ensure the quark loop to

be finite at short distance. We can then use three local current at x, y, and z, provided that

Z3
V is multiplied to the final results. See Appendix ???.

We use domain wall action not only for quarks but for the muon as well. We compute

the muon propagators with domain wall height M5 = 1 and infinite Ls. Since all the muon

photon interactions have been explicitly included in the formula, all the muon propagators

are free field fermion propagators. To calculate these free propagators, we can use Fourier

transformations and analytical expressions. So we can enjoys the nice properties without

addition cost compare with the conventional cheaper fermions, e.g. Wilson fermion. We

also use local currents for the photon muon interactions at x′, y′, and z′.

Since we need to sum over all six different permutations of the three internal photons, all

pairs of x, y and combinations of photon polarizations should be computed separately. The

work need to be done for the muon line is proportion to M2. So for large M , the cost for

the free muon propagators can be comparable with the cost for quark propagators. In our

simulations, we usually choose M = 16, which balances the cost for muon and quarks. Also,

M = 16 is not yet too large, so the over all statistics is still roughly proportion to M2.

Above derivation take the limit that tsep → +∞. In practice, if we calculate the QED

part using lattice, we will have finite tsep, which is set to be half of the lattice time extent

11

xop�

z�



Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Conserved current & moment method�

n  [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex 
(external current)  is set to be conserved current (other three are local currents). All possible 
insertion are made to realize conservation of external currents config-by-config. 

 
 
 
 

n  [moment method , q2�0] By exploiting the translational covariance for fixed external 
momentum of lepton and external EM field, q->0 limit value is directly computed via the first 
moment of the relative coordinate, xop – (x+y)/2,  one could show 
   

 
 

     to directly get F2(0) without extrapolation. 
         �
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up if the external momentum transfer q becomes small.
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F2(0) =
gµ− 2
2

≡ aµ (13)
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :



Dramatic Improvement ! 
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Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243× 64 lattice with a−1= 1.747GeV and mπ= 333MeV. mµ= 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

a=0.11	fm,	243x64		(2.7	fm)3,		
mπ	=	329	MeV,			mμ	=~	190	MeV,	e=1�

more	than	x100		reduced	cost	!�

61

Table 4.10: Results for F2(q2) from applying the conserved and moment methods to the

the 24IL ensemble with mµa = 0.1 using a muon source-sink separation tsep = 32. As

before,
p
Var = Err

p

NconfNprop. We use the conserved current for the external photon

and local currents for the internal photons for both methods. The conserved results are for

q2 = (2⇡/L)2 while the moment methods gives a q2 = 0 result.

Method F2/(↵/⇡)3 Nconf Nprop

p
Var

Conserved 0.0825(32) 12 (118 + 128)⇥ 2⇥ 7 0.65

Mom. 0.0804(15) 18 (118 + 128)⇥ 2⇥ 3 0.24

q2 = 0. Since these calculations are less computationally costly than those for QCD, we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite-volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [9, 10]. This QED calculation serves

both as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and nonzero-lattice-

spacing errors.

In Fig. 4.6 we show results for F2(0) computed for three di↵erent lattice spacings, i.e.

three di↵erent values of the input muon mass in lattice units, but keeping the linear size of

the system fixed in units of the muon mass. The data shown in Fig. 4.6 are also presented

in Table 4.11. We use two extrapolation methods to obtain the continuum limit. The first,

shown in the figure, uses a quadratic function of a2 to extrapolate to a2 = 0. The second

makes a linear extrapolation to a2 = 0 using only the two leftmost points for each of the

three values of mµL. The coe�cients for the quadratic-in-a2 fits shown in Fig. 4.6 as well as

those for the linear-in-a2 fits are given in tabular form in Tables. 4.12 and 4.13.



M�=170 MeV cHLbL result 
[ Luchang Jin et al. , arXiv:1510.07100 ]�

n  V=(4.6 fm)3, a = 0.14 fm, mµ=130 MeV, 23 conf 
n  pair-point sampling with AMA (1000 eigV, 100CG) , > 6000 meas/conf 
•   |x-y| <= 5, all pairs, x2-5 samples for shorter distances,  
     217 pairs  (10 AMA-exact) 
•  |x-y| > 5,  512 pairs ( 48 AMA-exact) 

n  13.2 BG/Q Rack-days 

within QED, arising when the internal loop is a muon, working at three values for the

lattice spacing and three volumes. By extrapolating to vanishing lattice spacing and infinite

volume we obtain a result which agrees with the analytic result within 2%, an accuracy

expected from a combination of statistical and extrapolation uncertainties.

The most successful approach uses exact, analytic formulae for the three photon prop-

agators that appear in the HLbL amplitude and the standard methods of lattice QCD. In

contrast with normal perturbative methods, much of the calculation is performed in position

space and stochastic methods are only introduced to sample position-space sums, reducing

the computational cost so that it grows proportional to the space-time volume instead of its

cube. Because of the structure of the amplitude being computed, we can identify a specific

space-time position within the hadronic part of the amplitude and use that location as the

origin to obtain the anomalous magnetic moment from what is essentially a classical spatial

moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ−2 from

a relatively coarse, 323 × 64 ensemble with 1/a = 1.38 GeV, spatial extent L = 4.6 fm and

pion mass mπ = 171 MeV:

(gµ − 2)cHLbL

2
= (0.1054± 0.0054)(α/π)3 = (132.1± 6.8)× 10−11. (47)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ−2 of (105±26)×10−11 and the difference between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)×

10−11. Equation (47) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the non-zero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insufficiently

well understood to be reliably estimated. A particularly important systematic errors comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (47) with

experiment serves only to give a context for the size of the present statistical errors.

In Section III we have presented a series of numerical tests of many of the different

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (47). We hope that some of these may be useful in the future for the efficient

calculation of other quantities that involve a combination of QED and QCD, a relatively
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Figure 8. Histograms and scatter plots for the contribution to F2 from different separations |r| =

|x− y| are shown in the left and right plots respectively, following the conventions used in similar,

previous figures. The upper two plots are obtained using the conserved version of the exact photon

method on the 32ID ensemble. The lower two plots are obtained using the moment method, but

from approximate propagators each obtained from 100 CG iterations, again on the 32ID ensemble.

with the restriction |z − x| ≥ |x − y| and |z − y| ≥ |x − y| that was described previously,

to the 24I ensemble with mµa = 0.1 in order to compare these methods with the original

subtraction calculation [17] which was carried out on the same ensemble with the same

muon mass. We compute the short distance part up to rmax = 4. For |r| ≤ 2 we compute

each independent direction two times while for 2 < |r| ≤ 4 each independent direction is

computed only once for each configuration. We take many discrete symmetries into account

when summing over the short-distance part, including independent inversions of x, y, z, t,

and exchanges of the x and y directions. For the long-distance part, we did not use the M2

method, but instead directly chose the probability distribution for the point pairs (|r| > 4):

P24IL(r) ∝
1

|r|4
e−0.1|r|. (43)

For the conserved method the propagators are computed with approximate inversions
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r	=	min	{|x-y|,	|y-z|,|z-x|}�

Strange	contribu/on	:	(0.0011±	0.005)	(α/π)3		�



M�=170 MeV cHLbL result (contd.) 
�

  “Exact” ... q = 2pi / L,  
  “Conserved (current)” ... q=2pi/L, 3 diagrams 
  “Mom” ... moment method q->0, with AMA 

Method F2/(α/π)3 Nconf Nprop

√
Var rmax SD LD ind-pair

Exact 0.0693(218) 47 58 + 8× 16 2.04 3 −0.0152(17) 0.0845(218) 0.0186

Conserved 0.1022(137) 13 (58 + 8× 16)× 7 1.78 3 0.0637(34) 0.0385(114) 0.0093

Mom. (approx) 0.0994(29) 23 (217 + 512) × 2× 4 1.08 5 0.0791(18) 0.0203(26) 0.0028

Mom. (corr) 0.0060(43) 23 (10 + 48) × 2× 4 0.44 2 0.0024(6) 0.0036(44) 0.0045

Mom. (tot) 0.1054(54) 23

Table VIII. Results from three variants of the exact photon method obtained from the 32ID ensem-

ble. The first row, labeled “Exact”, corresponds to the row labeled 32ID in Tab. VI. The second

row, labeled “Conserved” is similar except all three arrangements of the vertices x, y and z are

combined insuring that the external current is conserved on each configuration. The final three

rows are obtained from the moment method and are explained in the text.

while the preceding two rows “Mom. (approx)” and “Mom. (corr)” show separately the

approximate AMA results and the needed correction term. The “SD” and “LD” columns

give the results from the pairs with |r| ≤ rmax and |r| > rmax, respectively. The “ind-

pair” column gives the error that would be expected if the long-distance pairs were truly

independent. Note that the quantity F2(q2) is computed at q2 = (2π/L)2 for the first two

rows and at q2 = 0 for the final three rows. The final error shown for the moment method

on the fifth line of Tab. VIII is obtained by applying the jackknife method to the sum of

the approximate AMA result and the AMA correction term. The resulting error is similar

to what would be found were the statistical error on the approximate and correction terms

computed separately and added in quadrature.

We should emphasize that the moment-method result given in the final line of Tab. VIII

is the most important numerical result presented in this paper. It provides the cHLbL

contribution (calculated directly at q2 = 0) to g − 2 for the muon with a 5% statistical

accuracy for the case of a pion with mπ = 171 MeV using a (4.6 fm)3 spatial volume but

with a relatively coarse lattice spacing a with 1/a = 1.378 GeV. More information about the

conserved and moment method calculations presented in Tab. VIII can be found in Fig. 8

where histograms and scatter plots are presented as functions of the separation of the two

stochastically chosen points x and y.

As a final topic in this section we apply the conserved method and the moment method,
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Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
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′ x
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, ρ

′
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z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.



physical M�=140 MeV cHLbL result 
[ Luchang Jin et al. , preliminary]�

n  V=(5.5 fm)3, a = 0.11 fm, mµ=106 MeV, 69 conf  [RBC/UKQCD] 
n  Two stage AMA (2000 eigV, 200CG and 400 CG)  using zMobius,      

~4500 meas/conf 
n  160 BG/Q Rack-days 139MeV Pion 483

× 96 Lattice 32/36
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Figure 21. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. The left plot
is evaluated with z sumed over longer distance region, so the small r region includes most of the
contribution. The right plot is evaluated with z sumed over longer distance region, so the QCD finite
volume is better controlled in the small r region.

• Contribution vanishes long before reaching the boundary of the lattice.

• Suggesting the QCD finite volume effects be small in this case.

• Simply increasing the QED box will fix most of the finite volume effects.

r	=	min	{|x-y|,	|y-z|,|z-x|}� r	=	max{|x-y|,	|y-z|,|z-x|}�
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• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.
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]
u(p) (12)

F2(0) =
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• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.
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spatial moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ�2 from

a relatively coarse 483 ⇥ 96 ensemble with 1/a = 1.73 GeV, spatial extent L = 5.5 fm and

pion mass m⇡ = 139 MeV:

(gµ � 2)cHLbL

2
= (0.933± 0.0073)(↵/⇡)3 = (116.9± 9.1)⇥ 10�11, (6.1)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ�2 of (105±26)⇥10�11 and the di↵erence between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)⇥
10�11. Equation (6.1) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the nonzero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insu�ciently

well understood to be reliably estimated. A particularly important systematic error comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (6.1) with

experiment serves only to give a context for the size of the present statistical errors.

In Chapter 4 we have presented a series of numerical tests of many of the di↵erent

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (6.1). We hope that some of these may be useful in the future for the e�cient

calculation of other quantities that involve a combination of QED and QCD, a relatively new

area where there are many new directions to explore.

The cHLbL calculation at physical pion mass presented here are performed on current

leadership-class computers. A follow-on calculation with a smaller lattice spacing and a

corresponding 643 ⇥ 128 volume are planed, allowing a continuum limit to be evaluated.

Controlling the e↵ects of finite volume and including the contributions of disconnected dia-

grams are more di�cult, but they are being actively pursued. For now, we may guess the

size of discretization and finite volume e↵ects based on our QED light-by-light calcuation

(preliminary,	stat	err	only)�

integrand	safely	suppressed	before	
reaching			r	~		L/2�



Disconnected diagrams in HLbL 
�

n  Disconnected diagrams 
 
 
 
 
 
 

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach
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Disconnected HLbL would be non-negligible�

n  The major contribution, single pi0 (and 	, 	’	exchange diagrams 
through 2��π0, would have both connected and disconnected 
contributions. 
 
 
 
 
 

n  A quark model consideration for LbL pi0 exchange turns out to be 
Con : DisCon roughly same size with opposite sign  (L. Jin) 

n  Good news :  it’s not 	’ (only), so S/N would not grow 
exponentially with the propagation length. 

n  Bad news :  it’s disconnected quark loops, and many of them.  �



SU(3) hierarchies for dHLbL�

n  At ms=mud  limit,  following type of dHLbL survives due to 
  Qu + Qd + Qs = 0 

n  Physical point run is in progress using similar techniques to 
cHLbL. 
preliminary result  
a negative value with ~30% stat err ! 

n  O(ms-mud) /3  and   O( (ms-mud)2 ) 

Muon g − 2 Light by Light

by Luchang Jin

xsrc xsnkz
′
,κ

′
y
′
,σ

′ x
′
, ρ

′

xop, ν

z,κ
y,σ x, ρ

Figure 1. Disconnected Light by Light diagrams. There are other possible permutations.

1 Method outline

• Use one configuration to compute 32 point source propagators and perform HVP like con-
traction. Store the average of the results, Πρ,σ

avg(r), and later we would subtract it from other
HVP like contraction computed using other configurations.

Πρ,σ
avg(r) =

1
N

∑

k=1

N

{−Tr[γρSq(xk, xk + r)γσSq(xk + r, xk)]} (1)

• Start with point source x, compute point source quark propagators and photon x→ x′.

• Compute the local current for all possible y, Πρ,σ(x, y) (subtract Πρ,σ
avg(x, y) from this value)

Πρ,σ(x, y) = −Tr[γρSq(x, y)γσSq(y, x)]−Πρ,σ
avg(y −x) (2)

• Optional subtraction: Ideally, the sum of the current over space time should be zero. Since
we use local current, this is not strictly true. But we can introduce Πρ,σ

′ (x, y) where

Πρ,σ
′ (x, y) = Πρ,σ(x, y)− δx,y

∑

y ′

Πρ,σ(x, y ′) (3)

Should try to see if this trick work for connected LbL calculation.

• Use the current computed above as a source and construct photon y→ y ′

• Use the two photons constructed above and compute the muon line with sequential source
finally contract at z ′ with local current. Note that this procedure should be performed for all
possible permutations of the three photons. The muon source and sink separation is usually
taken to be half of the lattice time extent, and the source and sink positions are chosen so
that x is in the middle of them xt = ((xsrc)t +(xsnk)t)/2.

• Use the local current at all possible z ′ construct photon z ′→ z

1
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Figure 5.1: Leading order diagram, survives in SU(3) limit.
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Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.
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diagrams, the signal has to come from a subtle gluon interactions between the two quark

loops, which can only be discovered by gauge averaging. As a result, although the signal

should be exponentially suppresed when |r| = |x � z| become large just as the connected

diagram, the noise remains constant for arbitrary |r|. Since the formula involve summation

over r, one can expect a lot of noises come from the large |r| region, and will become larger

if we increase the volume. However, the independence of these two loops also provide some

benefit. The contraction at y position will not depend on the position of z, thus the M2 trick

can be applied without recomputing the muon part. So, we obtained order M2 combinations

of samples with no additional cost, where M is the number of point source quark propagators
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Figure 5.3: Even higher order diagrams.
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computed for each configuration.

5.2 Infinite volume limit

Normally, the finite volume e↵ects in lattice QCD calculations are exponentially suppressed

by L, the linear size of the lattice volume times m⇡, the energy of lowest energy eigen-state

of QCD. For example, the points x, y, z, which appears in Eq. (3.6), are directly connected

to on the quark loop. The finite volume e↵ects introduced when limiting these points in a

finite size lattice are exponentially suppressed. However, in the light-by-light calculation,

there are also QED finite volume e↵ects. The QED finite volume e↵ects enter only through

Eq. (3.7), which include everything except the quark loop. We repeat the equation below:

G⇢�(x, y, z, xsnk, xsrc) =
X

x0,y0,z0

G⇢⇢0(x, x
0)G��0(y, y0)G0(z, z0)

·
h

Sµ (xsnk, x
0) �⇢0Sµ(x

0, z0)�0Sµ(z
0, y0)��0Sµ (y

0, xsrc)

+Sµ (xsnk, z
0) �0Sµ(z

0, x0)�⇢0Sµ(x
0, y0)��0Sµ (y

0, xsrc)

+four other permutations
i

. (5.1)

The summation variables x0, y0, z0 in above equation can move freely along the muon line,

only connected to the quark loop by massless photons. Thus, Eq. (5.1), when evaluated



Systematic errors�

n  Missing disconnected diagrams  
   � compute them 
 

n  Finite volume  
   

n  Discretization error 
      � a scaling study for 1/a = 2.7 GeV, 64 cube lattice 
at physical quark mass is proposed to ALCC at Argonne 

 
n  ... 
 



Systematic effects in QED only study�

n  muon loop, muon line 
n  a = a mµ / (106 MeV) 
n  L= 11.9, 8.9, 5.9 fm 
n  known result :  F2 = 0.371 (diamond) correctly reproduced (good 

check)  
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Again a light loop which yields a unexpectedly large contribution
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Figure 4.6: Plots of our results for the connected light-by-light scattering contribution in

QED to F2(0), known to be 0.371⇥ (↵/⇡)3 [9, 10], as a function of a2 expressed in GeV by

assigningmµ = 106 MeV. This is done for three choices of the physical lattice size L = 11.9 fm

(diamonds), 8.9 fm (squares) and 5.9 fm (circles). The curves shown are quadratic functions

of a2 chosen to pass through the three points for each physical volume. The coe�cients for

each of these fits are listed in Table 4.13.
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Figure 4.7: Results for F2(0) from QED-connected light-by-light scattering. These results

have been extrapolated to the a2 ! 0 limit using two methods. The upper points use the

quadratic fit to all three lattice spacings shown in Fig. 4.6, while the lower point uses a linear

fit to the two leftmost points in that figure. Here we extrapolate to infinite volume using

the linear fits shown to the two, leftmost of the three points in each case.
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FV	and	discre/za/on	error	could	be	as	large	as	20-30	%,	
similar	discre/za/on	error	seen	from	QCD+QED	study�



QCD box in QED box�

n  FV from quark is exponentially suppressed  ~ exp( - Mπ LQCD)    
n  Dominant FV effects would be from  photon 
n  Let photon and muon propagate in larger (or infinite) box than 

that of quark 

n   We could examine different lepton/photon in the off-line manner 
e.g.  QED_L (Hayakwa-Uno 2008) with larger box, Twisting 
Averaging [Lehner TI LATTICE14]  or Infinite Vol. Photon 
propagators    [C. Lehner, L.Jin, TI LATTICE15] 

Finite Volume Effects - QCD box inside QED box 29/36

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Figure 19. QCD box inside QED box illustration.

∑

r

[

∑

z,xop

1
2

x⃗op× ūs′(0) iF⃗
(

0; x=−
r

2
, y = +

r

2
; z, xop

)

us(0)

]

(36)

• The integrand decreases exponentially if one of r, z, or xop become large. The fact that
the sum is limited within the lattice only has exponentially suppressed effect. We have use
the moment method to take q→0 limit, eliminating that part of the “finite volume” effect.

• However, the integrand have implicit sum over x′, y ′, and z ′. Major finite volume effects
result from these three variables are limited within lattice.

• Solution: do not limit x′, y ′, and z ′ within the QCD box. We can sum over x′, y ′, and
z ′ in much larger QED boxes. We are also working on numerical strategies to compute
the sum in infinite volume. This way, we can capture the major part of the finite volume
effects with the QCD lattice just large enough to contain the quark loop.
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QED box in QCD box (contd.)�

n  Mπ=420 MeV, mµ=330 MeV, 1/a=1.7 GeV 
n  (16)3 = (1.8 fm)3 QCD box in (24)3= (2.7 fm)3 QED box�

423MeV Pion 163
× 32 Lattice V.S. 243

× 64 Lattice 30/36

Ensemble mπ L QCD Size QED Size
F2(q2 = 0)
(α/π)3

16I 3.87 163× 32 163× 32 0.1158(8)
24I 5.81 243× 64 243× 64 0.2144(27)

16I-24 163× 32 243× 64 0.1674(22)

Table 4. arXiv:1511.05198. Finite volume effects studies. a−1 = 1.747 GeV, mπ = 423 MeV,
mµ = 332MeV.

• Large finite volume effects with these ensembles and muon mass.

• Increasing the QED box size help reducing the finite volume effect, but haven’t completely
fixed the problem.

• Suggesting significant QCD finite volume effect.

• The histogram plot may help us further investigating this QCD finite volume effect.
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the opposite of this choice, which can provide more information about QCD finite-volume

e↵ects:

Z0(x, y, z) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

3 if |x� y| > |x� z| and |x� y| > |y � z|
3/2 if |x� y| = |x� z| > |y � z| or |x� y| = |y � z| > |x� z|
1 if |x� y| = |x� z| = |y � z|
0 otherwise

.(5.2)

With this choice, in the small r region, the distances between x, y, z are all short, so the

QCD finite volume e↵ects should be small. The right plot of Figure 5.5 suggest that it is

indeed the case. In the small r region, where we control the QCD finite volume e↵ects,

the result from the 16I QCD/24 QED calculation agrees very well with 24I. However, as |r|
becomes larger, the quark loop evaluated in 16I is a↵ected by the boundary and begins to

deviate from the 24I results. Note because we use periodic boundary conditions for the quark

propagators, the maximum spatial separation between source and sink in any direction is 8

for quark propagators on the 16I lattice.

Figure 5.5: The plots show histograms of the contribution to F2 from di↵erent separations

|r| = |x � y|. The sum of all these points gives the final result for F2. The vertical lines at

|r| = 5 in the plots indicate the value of rmax. The left plot is evaluated with Z, so the small

r region includes most of the contribution. The right plot is evaluated with Z0 in place of Z,

so the QCD finite volume is better controlled in the small r region.
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 Summary �
 
n  Connected HLbL calculation is improved very rapidly 
n  Many orders of magnitudes improvements 

 
•  coordinate-space integral using analytic photon propagator with adaptive 

probability (point photon method) 
•  config-by-config conserved external current  
•  take moment of relative coordinate to directly take q�0 
•  AMA 

   � 8 % stat. error at physical point 
 
 
 
n  SU(3) unsuppressed disconnected diagram has signal also at physical 

point 

n  Still large systematic errors (missing disconnected, FV, discretization 
error, ... ) 
 

n  Goal : 10% error  
22	
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spatial moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ�2 from

a relatively coarse 483 ⇥ 96 ensemble with 1/a = 1.73 GeV, spatial extent L = 5.5 fm and

pion mass m⇡ = 139 MeV:

(gµ � 2)cHLbL

2
= (0.933± 0.0073)(↵/⇡)3 = (116.9± 9.1)⇥ 10�11, (6.1)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ�2 of (105±26)⇥10�11 and the di↵erence between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)⇥
10�11. Equation (6.1) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the nonzero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insu�ciently

well understood to be reliably estimated. A particularly important systematic error comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (6.1) with

experiment serves only to give a context for the size of the present statistical errors.

In Chapter 4 we have presented a series of numerical tests of many of the di↵erent

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (6.1). We hope that some of these may be useful in the future for the e�cient

calculation of other quantities that involve a combination of QED and QCD, a relatively new

area where there are many new directions to explore.

The cHLbL calculation at physical pion mass presented here are performed on current

leadership-class computers. A follow-on calculation with a smaller lattice spacing and a

corresponding 643 ⇥ 128 volume are planed, allowing a continuum limit to be evaluated.

Controlling the e↵ects of finite volume and including the contributions of disconnected dia-

grams are more di�cult, but they are being actively pursued. For now, we may guess the

size of discretization and finite volume e↵ects based on our QED light-by-light calcuation

(preliminary,	stat	err	only)�



Future plans�

n  (discretization error) Nf=2+1 DWF/ Mobius ensemble at 
physical point, L=5.5 fm, a=0.083 fm, (64)3 at ALCC 
@Argonne  started to run 

n   (FV study)   QCD box in QED box at physical point 
n  Disconnected diagrams 



Backup slides / for discussion�

interplays between dispersive approach 
and Lattice 
l  g-2 HVP 
l  Vus from strangeness�inclusive decay �



(plan B) Interplays between lattice 
and dispersive approach  g-2�

n  Dispersive approach from R-ratio  R(s) 
�
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n  Can we combine dispersive & lattice and get more precise (g-2)HVP 
than both ?      [ 2011 Bernecker Meyer ] 

n  Inverse Fourier trans to Euclidean vector correlator 
n  Relevant for g-2   Q2 = (mµ/2)2 = 0.0025 GeV2 
n  It may be interesting to think  
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Vus extraction strangeness tau 
inclusive decay �

|us|V
0.215 0.22 0.225

 decays, PDG 2013l3K
 0.0014±0.2253 

 decays, PDG 2013l2K
 0.0010±0.2253 

CKM unitarity, PDG 2013
 0.0010±0.2255 

 s inclusive, HFAG 2014→ τ
 0.0021±0.2176 

, HFAG 2014νπ → τ / ν K→ τ
 0.0019±0.2232 

, HFAG 2014ν K→ τ
 0.0020±0.2212 

 average, HFAG 2014τ
 0.0014±0.2204 

HFAG-Tau
Summer 2014

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 10



Tau decay

• ⌧ ! ⌫ + had through V-A vertex

• Apply the optical theorem to related to VV and AA hadronic vacuum polarization (HVP)

• For hadrons with strangeness -1, CKM matrix elements V
us

is multiplied

• ⌫ takes energy away, makes differential cross section is related to the HVPs (c.f. in
e

+

e

� case, the total cross section is directly related to HVP )

R

ij
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� ! hadrons
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• The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) current-current two
point
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Finite Energy Sum Rule (FESR)

• Do the finite radius contour integral

• Real axis integral from experimental R
⌧

• Use pQCD and OPE for the large circle integral

• Any analytic weight function w(s)

Z
s

0

s

th

Im⇧(s)w(s) =

i

2

I

|s|=s

0

ds⇧(s)w(s)

Re(s)

Im(s)
pQCD OPE spectral data

1

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 6



Combining FESR and Lattice

• If we have a reliable estimate for⇧(s) in Euclidean (space-like) points, s = �Q

2

k

< 0,

we could extend the FESR with weight function w(s) to have poles there,

Z 1

s

th

w(s)Im⇧(s) = ⇡

N

pX

k

Res
k

[w(s)⇧(s)]

s=�Q

2

k
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✓
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s

m

2

⌧

◆
Im⇧

(1)

(s) + Im⇧

(0)

(s) / s (|s| ! 1)

• For N
p

� 3, the |s| ! 1 circle integral vanishes.

Re(s)

Im(s)
pQCD OPE spectral data

1

XXX

Lattice HVPs
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weight function w(s)

• Example of weight function

w(s) =

N

pY

k

1

(s + Q

2

k

)

=

X

k

a

k

1

s + Q

2

k

, a

k

=

X

j 6=k

1

Q

2

k

� Q

2

j

=)
X

k

(Q

k

)

M

a

k

= 0 (M = 0, 1, · · · , N
p

� 2)

• The residue constraints automatically subtracts ⇧(0,1)

(0) and s⇧

(1)

(0) terms.

• For experimental data, w(s) ⇠ 1/s

n

, n � 3 suppresses

. larger error from higher multiplicity final states at larger s < m

2

⌧

. uncertanties due to pQCD+OPE at m2

⌧

< s

• For lattice, Q2

k

should be not too small to avoid large stat. error, Q2 ! 0 extrapola-
tion, Finite Volume error(?). Also not too larger than m

2

⌧

to make the suppression in
time-like 0 < s < m

2

⌧

working.

• Other w(s) could be useful to enhance some region s > 0 which may be usable for
(g � 2)

µ

HVP (?)

• c.f. HPQCD’s HVP moments works
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Preliminary	results	
[	H.	Ohki,	A.	Jurner,	C.	Lehner,	K.	Maltman	et	al.	]	

Our	result		
for	all	channels	

All	our	results	(C<1,	N=3,4)	are	consistent	with	each	other.		
Note	:	Other	systema/c	errors	of	sea	quark	mass	chiral	extrapola/on,	la9ce	O(a^4)	

discre/za/on,		
and	higher	order	OPE	have	not	been	included.	These	must	be	assessed	in	a	future	study.	

32	

very	preliminary	

This	work	



AMA+MADWF(fastPV)+zMobius accelerations  �
n  We utilize  complexified  5d hopping term of Mobius action [Brower, Neff, Orginos], 

zMobius,  for a better approximation of the sign function. 
 
 
 
 

n  1/a~2 GeV, Ls=48 Shamir ~  Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s 
complex varying) ~5 times saving for cost AND memory 

 
 
 
 
 
 
 
 
 
n  The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of 

condition number due to order of magnitudes hierarchy of b_s, c_s  [also Neff found this]  
 
 
 

n  Fast Pauli Villars (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, 
Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D   
  [Edward, Heller] 

n  All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical 
point 48 cube case. And ~100 and 200 times for the 32 cube, Mpi=170 MeV, 140, in this 
proposal (1,200 eigenV for 32cube) . 

 �

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012 Ls� 	|eps(48cube)	–	eps(zMobius)|�

6� 0.0124	

8� 0.00127�

10� 0.000110�

12� 8.05e-6�



n  O(imp) has smaller error 
O(appx) need to be cheap &  not to be too 
accurate  
NG  suppresses the bulk part of noise cheaply 
        

Expensive		:		infrequently	measured	� Cheap			:		frequently	measured	�

La9ce	
Symmetry�

Covariant Approximation Averaging ( CAA )  
 a new class of Error reduction techniques�

[	Blum,	TI,	Shintani	PRD	88	(2013)	094503	]�

Original�

unbiased	
imporved�

ensemble�

ensemble	�

ε�

ε�

+�

New	bias-free	es/mator	even	without	covariant	
approxima/on	by	a	stochas/c	choice	of	source	
loca/on	for	the	exact/rest	computa/on	is	now	
available		:					Appendix	D		of		arXiv:1402.0244	�



Examples of Covariant Approximations 
(contd.)�

n  All Mode Averaging 
AMA 
 Sloppy CG  or 
 Polynomial  
   approximations 
 

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy	control	:	
•  	low	mode	part	:	#	of	eig-mode	
•  	mid-high	mode	:		degree	of	poly.�If	quark	mass	is	heavy,	e.g.		~	strange,		

low	mode	isola/on	may	be	unneccesary�


