Hadronic Light-by-Light Scattering
and Muon g — 2: Dispersive Approach

Peter Stoffer
in collaboration with G. Colangelo, M. Hoferichter and M. Procura

JHEP 09 (2015) 074 [arXiv:1506.01386 [hep-ph]]
JHEP 09 (2014) 091 [arXiv:1402.7081 [hep-ph]]

Helmholtz-Institut fr Strahlen- und Kernphysik
University of Bonn

18th May 2016

Symposium on EFT and LGT, TUM Institute for Advanced Study


http://arxiv.org/abs/1506.01386
http://arxiv.org/abs/1402.7081

Outline

@ Introduction

@ Lorentz Structure of the HLbL Tensor
© Master Formula for (g — 2),,

@ Mandelstam Representation

@ Conclusion and Outlook



@ Introduction

@ Lorentz Structure of the HLbL Tensor
© Master Formula for (g — 2),,

@ Mandelstam Representation

@ Conclusion and Outlook



@ Introduction

(9 — 2)u:

comparison of theory and experiment

(I I B L I B L I B L
HMNT (06) .—-—« 1
JN (09) ——

Davier et al, t (10) »—d—|

Davier et al, '™ (10) v—-—i

JS (11) e

HLMNT (10) |

HLMNT (11) o

--- experiment ——————— ——————— ——————— ——————— ——————
BNL (new from shiftina) | | | ——

170 180 190 200 210

a, x 10'° — 11659000

— Hagiwara et al. 2012



@ Introduction

(g — 2),: theory vs. experiment

discrepancy between SM and experiment ~ 3o
hint to new physics?

new experiments (FNAL, J-PARC) aim at reducing
the experimental error by a factor of 4

theory error completely dominated by hadronic
effects

hadronic vacuum polarisation responsible for largest
uncertainty, but will be systematically improved with
better data input



@ Introduction

Hadronic light-by-light (HLbL) scattering

e up to now only model calculations

e uncertainty estimate based rather
on consensus than on a systematic
method

o will dominate theory error in a few
years



@ Introduction

Model calculations of HLbL

Table 13

. - Lk
Summary of the most recent results for the various contributions to a;;”
our new evaluation for the pseudoscalars and some of the other results.

Lihad . .
8% % 10!, The last column is our estimate based on

Contribution BPP HKS KN MV BP PdRV  N/JN

7r0‘77.n’ 85+13 82.7+6.4 83+12  114+10 - 1144+13  99+16

7, K loops —19+13 —4.5%8.1 - — - —19+19 —19+13

7, K loops + other subleading in N, — - - 0+10 - - -

axial vectors 2.5+1.0 1.7+1.7 - 22+5 - 15410 2245

scalars —6.84£2.0 - - - - —T£7  —T£2

quark loops 2143 9.7+11.1 - - - 2.3 21+3
total 83+32  89.6+£15.4  80+40 136+25 110440 105+26 116439

— Jegerlehner, Nyffeler 2009
e pseudoscalar pole contribution most important
e pion-loop second most important

e differences between models, large uncertainties



@ Introduction

How to improve HLbL calculation?

e lattice QCD making progress

e dispersive approach



@ Introduction

Dispersive approach to HLbL

e make use of fundamental principles:
e gauge invariance, crossing symmetry
e unitarity, analyticity

e relate HLbL to experimentally
accessible quantities
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@ Lorentz Structure of the HLbL Tensor

The HLbL tensor: definitions

e hadronic four-point function:

H’“’M((h; qo, Q3)
S / dadydze= @ ErHsD) O[Tj8 (2)1% (4)i2n(2)%(0)[0)

e EM current: .
Jom = Z QigiV" ¢

i=u,d,s
e Mandelstam variables:
s=(p+@)?t=(@+ae)u=(0+ae)
e for (g — 2),, the external photon is on-shell:
qi =0, where ¢ = q1 + @2 + g3



@ Lorentz Structure of the HLbL Tensor

The HLbL tensor
e a priori 138 ‘naive’ Lorentz structures:
H;U/)\J — guug)\anl +guAgVJH2 + guagl/)\HS

A o
+ Z 4 4.9 ?}kz

i,k,l,m

+ Z A

e in 4 space-time dimensions: 2 linear relations among
the 138 Lorentz structures — Eichmann et al., 2014

¢ six dynamical variables, e.g. two Mandelstam
variables s, t and the photon virtualities ¢, ¢3, ¢3, ¢3



@ Lorentz Structure of the HLbL Tensor

HLbL tensor: gauge invariance

Ward identities

{Q‘fa ql2/7 Q:?a QZ}H;W)\U = 0

imply 95 linear relations between scalar functions 11;
off-shell basis: 138 — 95 — 2 = 41 structures
corresponding to 41 helicity amplitudes

relations between I1; imply kinematic zeros



@ Lorentz Structure of the HLbL Tensor

HLDbL tensor: Lorentz decomposition

Problem: find a decomposition

127 (g1, g2, q3) ZT“MU st u;q)

with the following properties:

e Lorentz structures T/** manifestly gauge invariant:

{q17q27q37q4} ,uu)\o':O

e scalar functions II; free of kinematic singularities and
zeros



@ Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):
e construct gauge projectors:

1297 Ao
T — g _ 4291 Ao o 4493
12 =9 — 34 — -

q1 - Q2 g g3 - 44
e gauge invariant themselves, e.g.
i1, =0
e leave HLbL tensor invariant, e.g.

!
L _
112 H,u’u)\o — H'uu)\o



@ Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Following Bardeen, Tung (1968):

e apply gauge projectors to the 138 initial structures:
95 immediately projectto 0

e remove 1/q; - ¢ and 1/q3 - ¢4 poles by taking
appropriate linear combinations

e BT basis: degenerate in the limits
@1 q2—>0,q3-q—0



@ Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

According to Tarrach (1975):
e degeneracies in the limits ¢; - ¢ — 0, g3 - g4 — O:

i Ao Ao Ao
§ ATy = q - X" +q3- Y
k

« extend basis by additional structures X7, y/**
taking care of remaining kinematic singularities

e equivalent: implementing crossing symmetry



@ Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

54
HNV}\U(qla g2, (]3) = Z ZT@HVAJHZ'(& ta U3 qu)
=1
e Lorentz structures manifestly gauge invariant

e crossing symmetry manifest: only 7 distinct
structures, 47 follow from crossing

e scalar functions II; free of kinematic singularities
= ideal quantities for a dispersive treatment
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@ Master Formula for (g — 2),,

20

Master formula: contribution to (¢ — 2),,

e from gauge invariance:

s 0
Huw\p = —qy a_qu,uV)\U
4

e for (g — 2),: afterwards take ¢, — 0

¢ no kinematic singularities in scalar functions: perform
these steps with the derived Lorentz decomposition

e only 12 linear combinations of the scalar functions II;
contribute to (¢ — 2),,



@ Master Formula for (g — 2),,

Master formula: contribution to (g — 2),,

12
> Tiqr, 2 p)ILi(qr, g2, —1 — 42)
=

HLbL 266/ d46]1 d4(]2

o (2m)* (2m)* gig3 (a1 + @2)*[(p + @1)* — mE][(p — q2)* — m]]

e T;: known integration kernel functions

o five loop integrals can be performed with
Gegenbauer polynomial techniques

o Wick rotation possible even in the presence of
anomalous thresholds

21



@ Master Formula for (g — 2),,

Master formula: contribution to (g — 2),,

i = 20 / aQ, / 10> / N =T

X Z Ti(Q1, Qa, )L (Q1, Q2, T),
i—1

T;: known integration kernels

I1,: linear combinations of the scalar functions II;

Euclidean momenta: Q? = —¢?

Q3 = Q1+ Q3 +2Q1Q,7

22
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@ Mandelstam Representation

Analytic properties of scalar functions

e right- and left-hand cuts in each Mandelstam variable
e double-spectral regions (box topologies)

e anomalous thresholds for large photon virtualities

24



@ Mandelstam Representation

25

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box 1
H/W/\U - H,w/)\cr + H,ul/)\a + HHV)\U +o.
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@ Mandelstam Representation

25

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box 1
H/W/\U - H/,w)\cr + H[LI/)\O’ + HMV)\U +o.

two-pion intermediate state in both channels:




@ Mandelstam Representation

25

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box T
H/W/\U - H/,w)\cr + H,ul/)\a + HHV)\U +..

two-pion intermediate state in first channel:



@ Mandelstam Representation

25

Mandelstam representation

e we limit ourselves to intermediate states of at most
two pions

e writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

_ 1ym-pole box 1
Hp,z//\a — H,LLI/XU + H,ul/)\a + HMV)\U +

neglected so far: higher intermediate states



@ Mandelstam Representation

Pion pole

e input: doubly-virtual and
singly-virtual pion transition form
| factors F. .0 and F, .. o
e dispersive analysis of transition
form factor:

— Hoferichter et al., EPJC 74 (2014) 3180

26



@ Mandelstam Representation

Pion box

e simultaneous two-pion cuts in
two channels

e Mandelstam representation
explicitly constructed

/ /dt stf’zt)+(t<_>u)+(s<—>U)

e ¢’-dependence: pion vector form factors £V (¢?) for
each off-shell photon factor out

27



@ Mandelstam Representation

Pion box

e SQED loop projected on BTT basis fulfils the same
Mandelstam representation

« only difference are factors of FV

e = box topologies are identical to FsQED:

—FVQ1FVQ2FVQ3

1aa0=4

e model-independent definition of pion loop

28



@ Mandelstam Representation

29

Pion box

Very simple expressions for box contributions in terms
of Feynman parameter integrals

7% (¢, a5, 43) = Fy (a})FY (63)FY (43)
1—x
167?2/ dx/ dy I;(z,y),

4(1—2x)%(1 —2y)%y(1 —y)
(e.y) = -3 L2020 2y
123

2

Ajje = M? —ayq? —a(1 — 2z —y)q; —y(1 —z — y)q;.

with e.qg.




@ Mandelstam Representation
Pion box

Pion vector form factor in the space-like region:

L L B B e I o B B e
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@ Mandelstam Representation

Pion-box saturation with photon virtualities
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@ Mandelstam Representation

Rescattering contribution

e neglect left-hand cut due to
| multi-particle intermediate states
in crossed channel

e two-pion cut in only one channel

e expansion into partial waves

32



@ Mandelstam Representation

Rescattering contribution

e unitarity relates it to the helicity
amplitudes of the subprocess
vy =

e dispersive integrals over the

1 imaginary parts allow the

reconstruction of I1,,,,

e sum rules ensure cancellation of
unphysical helicity amplitudes

33



@ Mandelstam Representation

The subprocess

Helicity amplitudes for v*v* — 7 dispersive solution
as Roy-Steiner equations

® 7y — WM. — Moussallam 2010, Hoferichter, Phillips, Schat 2011
® Y'Yy — T — Moussallam 2013
e v*v* — wm: work in progress

— Hoferichter, Colangelo, Procura, PS 2013

34



@ Introduction

@ Lorentz Structure of the HLbL Tensor
© Master Formula for (g — 2),,

@ Mandelstam Representation

@ Conclusion and Outlook

35



@ Conclusion and Outlook

Summary

e our dispersive approach to HLbL scattering is based
on fundamental principles:

e gauge invariance, crossing symmetry
e unitarity, analyticity

e we take into account the lowest intermediate states:
n%-pole and wr-cuts

e relation to experimentally accessible (or again with
data dispersively reconstructed) quantities

« a step towards a model-independent calculation of a,,

36



@ Conclusion and Outlook

A roadmap for HLbL

Pion transition form factor
Froyeys (a3,43)

Pion vector
form factor Fy;

37
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Backup



@ Backup Wick Rotation and Anomalous Threshold
Wick rotation

Trajectory of triangle anomalous threshold:

Alin(s)
g — —00
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@ Backup Wick Rotation and Anomalous Threshold
Wick rotation

Trajectory of triangle anomalous threshold:

A Im(s)
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