SM parameters from Lattice QCD Christine Davies University of Glasgow HPOCD collaboration

EFT & LGT Munich, May 2016

Lattice QCD works directly with the QCD Lagrangian. Can tune bare mass parameters very accurately using experimentally very well-determined hadron masses.

Conversion of lattice quark masses to \overline{MS} scheme

• Direct methods: Determine $m_{q,latt}$ in lattice QCD. $m_{\overline{MS}}(\mu) = Z_m(\mu a) m_{latt}$

Calculate Z in lattice QCD pert. th. or use 'nonpert' RI-MOM lattice matching. Error dominated by that of Z and continuum extrapolation. Note: Z cancels in mass ratios.

• Indirect methods: (after tuning m_{latt}) match a quantity calculated in lattice QCD to continuum pert. th. in terms of \overline{MS} quark mass

e.g. Current-current correlators for heavy quarks known through α_s^3 .

J

Chetyrkin et al, Maier et al

Issues with handling 'heavy' quarks on the lattice:

 $L_q = \overline{\psi}(D \!\!\!/ + m)\psi \to \overline{\psi}(\gamma \cdot \Delta + ma)\psi$

 Δ is a finite difference on the lattice - leads to discretisation errors. What sets the scale for these? For light hadrons the scale is Λ_{QCD} = few hundred MeV For heavy hadrons the scale can be m_Q

$$E(a) = E(a = 0) \times (1 + A(m_Q a)^2 + B(m_Q a)^3 + \ldots)$$

 $m_c a \approx 0.4, m_b a \approx 2$ for $a \approx 0.1 \text{fm}$

 \rightarrow need good discretisation of Dirac equation and multiple values of a for accurate continuum extrapolation.

Highly Improved Staggered Quarks (HISQ) formalism has errors improved to $\alpha_s(am)^2$, $(am)^4$ Follana et al, HPQCD, hep-lat/0610092

Current-current correlator method for m_c

t

- use 'nonpert' lattice
- inuum extrapolation.

t) match a quantity n pert. th. in terms

or method for lattice m_c 99, C. Mcneile et al, HPQCD,1004.4285

f lattice experiment. In J It J now.

calar η_c correlator is ly normalised.

Correlator time-moments:

Fit first 4 moments simultaneously, gives

$$\frac{m_{\eta_c}}{2m_c(\mu)} \quad \text{AND} \quad \alpha_s(\mu)$$

$$= 3m_c$$

Result:

 $m_c(m_c) = 1.273(6) \text{GeV}$

error dominated by unknown higher orders in pert. th. c. McNeile et al, HPQCD, 1004.4285

Further check: compare vector moments (after normalising current) to those extracted from $R_{e^+e^-}$ Agreement is a 1% test of (lattice) QCD. Gives: ex $a_{\mu}^c = 14.4(4) \times 10^{-10}$ HPQCD, 1208.2855, 1403.1778 lattice and expt errors similar size

see also ETMC, 1111.5252

Current-current correlator method -HISQ HPQCD, 1004.4285

• Repeat calcln for $m_q \ge m_c$ inc. ultrafine lattices

I		1		
	0.1186(4)	$\log W_{11}$	_	1.5
	0.1184(4)	$\log W_{12}$	···) -	$\widehat{\Im}$ 1.4
	0.1184(5)	$\log W_{ m BR}$	μ) _	
	0.1183(5)	$\log W_{\rm CC}$		$\begin{bmatrix} 1.0 \\ 0 \end{bmatrix}$
	0.1183(6)	$\log W_{13}$	×	
	0.1184(7)	$\log W_{14}$	' _	
	0.1182(7)	$\log W_{22}$	_	$1.0 - m_h/2$
	0.1180(8)	$\log W_{23}$	μ) _	
			-	3 4 5 6 7 8 9 h
-	0.1188(7)	$\log W_{13} / W_{22}$	×	\mathbf{C} , m_{η_h} , \mathbf{C}
H	0.1186(8)	$\log W_{11} W_{22} / W_{12}^2$		Can determine m_1/m_1 for
	0.1184(7)	$\log W_{ m CC} W_{ m BR}/W_{11}^3$	_	Call determine $\eta_h \eta_h$ for
	0.1186(7)	$\log W_{ m CC}/W_{ m BR}$	$\mu)$ _	heavy quarks - extrapolate
	0.1170(9)	$\log W_{14} / W_{23}$	_	(slightly) to h
	0.1173(9)	$\log W_{11}W_{23}/W_{12}W_{13}$	×	(Singhuy) to 0.
			$\overline{m_{n_{k}}}$	m = 5
	0.1184(5)	$\log W_{12}/u_0^6$	10	$\overline{m}_{b}^{n_{f}} = \overline{(\overline{m}_{b})} = 4.164(23) \text{GeV}$
$\Lambda \sigma r \epsilon$	0.1183(8)	$\frac{1}{100} W_{BR} / u_0^6$		
	0.1184(7)	$\log W_{\rm CC}/u_0^{\circ}$		-1.6 key error is now extrapoln in a
resul	0.1183(6)	$K_{0} W_{13} / u_0^8$		
	. ,	- / 0		

Update and improved method HPQCD, 1408.4169 Use improved $n_f = 2+1+1$ gluon field configs, more accurate lattice spacing determination etc etc. Determine m_c at higher scales by using multiple m_h

mc summary

Good consistency between lattice methods and actions

Alternative determinations of m_b HPQCD, 1408.4768

Current-current correlator method using vector bottomonium correlators calculated with improved NRQCD b quarks

mb summary

Again, good consistency between different lattice methods

HPQCD NRQCD JJ [1408.5768]

HPQCD HISQ JJ $n_f = 3$ [1004.4285]

HPQCD HISQ ratio $n_f = 4$ [1408.4169]

HPQCD NRQCD E_0 [1302.3739]

ETMC ratio method [1411.0484]

m_b/m_c from lattice QCD

completely nonperturbative determination of ratio gives:

 $\frac{m_b}{m_c} = 4.49(4)$

Agrees with that from current-current correlator method - test of pert. th. . Also tested $n_f=2+1+1$

HPQCD, 1408.4169

m_c/m_s

Mass ratio can be obtained directly from lattice QCD if same quark formalism is used for both quarks. Not possible with any other method ...

Combining m_c and m_c/m_s leads to 1% accuracy in m_s

 $\overline{m}_s(3\text{GeV}, n_f = 3) = 84.1(5)\text{MeV}$

New HPQCD results for m using RI-SMOM scheme Direct test of mass determination using different method

to current-current correlators but the same formalism

 $Z_m = Z_S^-$

Sturm et al, 0901.2599

Lytle, HPQCD, 1511.06547

Infrared sensitivity much reduced and perturbative matching factor (known through α_s^2) very close to 1.

α_s summary

 α_s is also well determined in current-current correlator method (particularly lowest moment)

Conclusions

 $m_c(m_c)$ is determined to 1% and $m_b(m_b)$ to 0.5% from continuum and lattice methods. $\alpha_S(M_Z)$ to 0.5% from lattice - multiple methods

1% accurate m_c/m_s ratio allows 1% in m_s also, along with RI-MOM methods

Tests of perturbation theory from completely nonperturbative mass ratios and JJ/RI-MOM comparison

Future improvements from higher order pert th. (?possible) and finer lattices to push up mu values.

Error budget for HISQ current-current method

TABLE IV. Error budget [31] for the c mass, QCD coupling, and the ratios of quark masses m_c/m_s and m_b/m_c from the $n_f = 4$ simulations described in this paper. Each uncertainty is given as a percentage of the final value. The different uncertainties are added in quadrature to give the total uncertainty. Only sources of uncertainty larger than 0.05% have been listed.

HPQCD, 1408.4169

	$m_c(3)$	$\alpha_{\overline{\mathrm{MS}}}(M_Z)$	m_c/m_s	m_b/m_c
Perturbation theory	0.3	0.5	0.0	0.0
Statistical errors	0.2	0.2	0.3	0.3
$a^2 \rightarrow 0$	0.3	0.3	0.0	1.0
$\delta m_{uds}^{ m sea} o 0$	0.2	0.1	0.0	0.0
$\delta m_c^{\rm sea} o 0$	0.3	0.1	0.0	0.0
$m_h \neq m_c \; (\text{Eq. (15)})$	0.1	0.1	0.0	0.0
Uncertainty in $w_0, w_0/a$	0.2	0.0	0.1	0.4
α_0 prior	0.0	0.1	0.0	0.0
Uncertainty in m_{η_s}	0.0	0.0	0.4	0.0
$m_h/m_c \rightarrow m_b/m_c$	0.0	0.0	0.0	0.4
δm_{η_c} : electromag., annih.	0.1	0.0	0.1	0.1
δm_{η_b} : electromag., annih.	0.0	0.0	0.0	0.1
Total:	0.64%	0.63%	0.55%	1.20%