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Quark masses and strong 
coupling are fundamental 
parameters of the SM but 
cannot be directly determined 
from experiment. 
Well-defined                are scheme 
and scale-dependent. 
Convention to use MS

Masses are input to theoretical expressions for SM cross-
sections e.g.                 

CDF

/27Paul Mackenzie,  USQCD.

Treatment of parametric uncertainties in Higgs physics

24

Table 1: Input parameters and their relative uncertainties, as used for the uncertainty estimation of the branching
ratios. The masses of the central values correspond to the 1-loop pole masses, while the last column contains the
correspondingMS mass values.

Parameter Central value Uncertainty MS massesmq(mq)

αs(MZ) 0.119 ±0.002

mc 1.42 GeV ±0.03 GeV 1.28 GeV
mb 4.49 GeV ±0.06 GeV 4.16 GeV
mt 172.5 GeV ±2.5 GeV 165.4 GeV

Given the uncertainties in the parameters, the parametric uncertainties have been determined as
follows. For each parameter p = αs,mc,mb,mt we have calculated the Higgs branching ratios for p,
p +∆p and p −∆p, while all other parameters have been left at their central values. The error on each
branching ratio has then been determined by

∆p
+BR = max{BR(p+∆p),BR(p),BR(p−∆p)}− BR(p),

∆p
−BR = BR(p)−min{BR(p+∆p),BR(p),BR(p−∆p)}. (3)

Note that this definition leads to asymmetric errors. The total parametric errors have been obtained by
adding the parametric errors from the four parameter variations in quadrature. This procedure ensures
that the branching ratios add up to unity for all parameter variations individually.

The uncertainties of the partial and total decay widths have been obtained in an analogous way,

∆p
+Γ = max{Γ(p+∆p),Γ(p),Γ(p −∆p)}− Γ(p),

∆p
−Γ = Γ(p)−min{Γ(p +∆p),Γ(p),Γ(p −∆p)}, (4)

where Γ denotes the partial decay width for each considered decay channel or the total width, respec-
tively. The total parametric errors have been derived by adding the individual parametric errors in quadra-
ture.

2.1.3.2 Theoretical uncertainties
The second type of uncertainty for the Higgs branching ratios results from approximations in the theoret-
ical calculations, the dominant effects being due to missing higher orders. Since the decay widths have
been calculated with HDECAY and PROPHECY4F the missing contributions in these codes are relevant.
For QCD corrections the uncertainties have been estimated by the scale dependence of the widths result-
ing from a variation of the scale up and down by a factor 2 or from the size of known omitted corrections.
For electroweak corrections the missing higher orders have been estimated based on the known struc-
ture and size of the NLO corrections. For cases where HDECAY takes into account the known NLO
corrections only approximatively the accuracy of these approximations has been used. The estimated
relative theoretical uncertainties for the partial widths resulting from missing higher-order corrections
are summarised in Table 2. The corresponding uncertainty for the total width is obtained by adding the
uncertainties for the partial widths linearly.

Specifically, the uncertainties of the partial widths calculated with HDECAY are obtained as
follows: For the decays H → bb, cc, HDECAY includes the complete massless QCD corrections up
to and including NNNNLO, with a corresponding scale dependence of about 0.1% [38–45]. The NLO
electroweak corrections [46–49] are included in the approximation for small Higgs masses [50] which
has an accuracy of about 1−2% forMH < 135 GeV. The same applies to the electroweak corrections to
H → !+!−. For Higgs decays into top quarks HDECAY includes the complete NLO QCD corrections
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Current discussions of Higgs branching fractions and partial widths use very conservative 
estimates  of parametric precisions.

Higgs X-
Section WG PDG lattice

Karlsruhe
(e+e-) 

world 
non-lattice

! !s 0.002 0.0007 0.0007 0.0012

! mc (GeV) 0.03 0.025 0.006 0.013

! mb (GeV) 0.06 0.03 0.023 0.016

Should interpret as 1 " errors.

Level of conservatism in assumed uncertainties that is appropriate depends on 
circumstances, e.g., on whether you’re discussing with a postdoc where something 
funny might be going on or whether you’re discussing with the New York Times.

P. 
Mackenzie, 
Snowmass 
2013

Compare results from multiple approaches for strong test 
of QCD.

H ! cc

mq/↵s



Lattice QCD works directly with the QCD Lagrangian.  
Can tune bare mass parameters very accurately using 
experimentally very well-determined hadron masses. 
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Conversion of  lattice quark masses to            schemeMS
• Direct methods: Determine                 in lattice QCD. mq,latt

Calculate Z in lattice QCD pert. th. or use ‘nonpert’ RI-
MOM lattice matching.  
Error dominated by that of Z and continuum extrapolation. 
Note: Z cancels in mass ratios.

• Indirect methods: (after tuning           ) match a quantity 
calculated in lattice QCD to continuum pert. th. in terms 
of         quark mass

J J

 Chetyrkin et al, Maier et al

e.g. Current-current correlators for 
heavy quarks known through       .

mlatt

MS

↵3
s

mMS(µ) = Zm(µa)mlatt



Highly Improved Staggered Quarks (HISQ) formalism has 
errors improved to

Issues with handling ‘heavy’ quarks on the lattice: 

Lq =  (D/ + m) !  (� · � + ma) 

�       is a finite difference on the lattice - leads to 
discretisation errors. What sets the scale for these? 
For light hadrons the scale is               = few hundred MeV⇤QCD

For heavy hadrons the scale can be  mQ

mca ⇡ 0.4, mba ⇡ 2 for
         need good discretisation of Dirac equation and 
multiple values of      for accurate continuum extrapolation.  

↵s(am)2, (am)4 Follana et al, HPQCD, !
hep-lat/0610092

a ⇡ 0.1fm

E(a) = E(a = 0)⇥ (1 +A(mQa)
2 +B(mQa)

3 + . . .)

a



Continuum: extract charm piece of: 

J/ψ ψ ,
▲  BES (2001)
❍  MD-1
▼  CLEO
■  BES (2006)pQCD
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Figure 3: R(s) for different energy intervals around the charm threshold region. The
solid line corresponds to the theoretical prediction, the uncertainties obtained from the
variation of the input parameters and of µ are indicated by the dashed curves. The inner
and outer error bars give the statistical and systematical uncertainty, respectively.

bottom case are obvious.
Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition

6

Current-current correlator method for mc

from experiment, then

J J

    a power series in             , known through         for first few values of k

e.g. Kuhn et al, 
hep-ph/0702103

vector 
coupling 
to photon

�s(µ) ↵3
s

c

c

Chetyrkin et 
al, 0907.2110

mc(mc) = 1.279(13)GeVUse k=1:
errors: expt + 
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Current-current correlator method for lattice mc
 HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285 

• Substitute time-moment of lattice  
charmonium correlator for experiment. In 
principle can use any current J now. 

J J
any 
current  
now

JPC

• For HISQ quarks pseudoscalar         correlator is  
most accurate. J is absolutely normalised. 

⌘c

step 1: calculate         correlators 
by combining lattice charm quark 
propagators 
step 2: large time - fit to 
exponential, gives       mass 
step 3: tune lattice quark mass so                
     mass correct.  
step 4: calculate time moments to 
compare to QCD pert. theory. 
Emphasises short-time contribns. 

⌘c

⌘c

⌘c

Conversion of  lattice quark masses to            schemeMS
• Direct methods: Determine                 in lattice QCD. mq,latt

Calculate Z in lattice QCD pert. th. or use ‘nonpert’ lattice 
matching. 
Error dominated by that of Z and continuum extrapolation.
Note: Z cancels in mass ratios.

• Indirect methods: (after tuning           ) match a quantity 
calculated in lattice QCD to continuum pert. th. in terms 
of         quark mass

J J

 Chetyrkin et al, Maier et al

mMS(µ) = Z(µa)mlatt

e.g. Current-current correlators for 
heavy quarks known through       .

mlatt

MS

�3
s

Saturday, 31 August 2013
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Figure 1: Left: a cc meson correlation function in QCD and also the charm quark
vacuum polarisation. Charm quark propagators connect the two currents, J . Right:
The correlation function for a cc pseudoscalar meson multiplied by e

Mt (where M

is the fitted ground-state mass) and plotted against time t/a in lattice units. The
ground-state clearly dominates the correlation function at large t. The statistical
errors from the lattice calculation are shown, but are so small as to be barely visible.

the QCD Lagrangian. These are the bare coupling constant and the quark masses. It
is important to realise that the lattice spacing is not specified at this point - it must
be determined from calculations performed on these configurations.

Once sets of gluon field configurations have been generated, we can calculate
quark propagators on them by solving the Dirac equation. In this equation the gluon
field appears in the covariant derivative term and the quark mass is a parameter.
Combining a quark and antiquark propagator together (making sure the colours match
at both ends and the spins are combined appropriately) makes a meson correlation
function. This is the amplitude to create a meson at one point and destroy it at some
other point. Averaging the meson correlation functions obtained over all the gluon
field configurations generated gives us a Monte Carlo estimate of the result for this
amplitude from the QCD Feynman Path Integral. The meson correlation function is
illustrated in Figure 1 (left). It shows the meson being created and destroyed by an
operator J , which is implemented when the quark propagators are tied together. At
intermediate points the charm quark and antiquark interact with each other via the
gluon fields and sea quarks in the background configuration.

The meson mass is determined by fitting the average meson correlation function
as a function of time on the lattice (we sum the end-points over x, y, z, at fixed t to
project onto zero spatial momentum for the meson). Because we are working with
Euclidean time, the expected behaviour at large times is as an exponential (rather
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G(t) = a6
�

⇤x

(amc)2 < 0|j5(⌦x, t)j5(0, 0)|0 >

Gn =
�

t

(t/a)nG(t)

Rn,latt = G4/G(0)
4 n = 4

=
am�c

2amc
(Gn/G(0)

n )1/(n�4) n = 6, 8, 10 . . .

Correlator time-moments:

(match k = 2, 3, 4 ...)

unknown perturbative coefficients [Eq. (21)] is twice
as wide as suggested by our simulation results (using
the empirical Bayes criterion [19]); we choose the
larger width to be conservative.

(ii) Include more/fewer finite-a corrections: We set
Nam ¼ 30 for our results above. Using Nam ¼ 15
gives results that differ by less than 0:5! for mb

and much less for the other quantities. Much larger
Nam’s can be tested easily using the trick described
in Sec. III B 2. For example, replacing Rlatt

n by !Rlatt
n

[Eq. (18)] with Nam ¼ 80 and !Nam ¼ 30 gives re-
sults that are essentially identical to those above. As
discussed above, taking !Nam ¼ 0 with the same Nam

also gives the same results and is 22 times faster (see
the Appendix for further discussion).

(iii) Change n dependence of finite-a corrections:
Replacing the n-dependent prior for the expansion
coefficients [Eq. (17)] by the n-independent prior
0" 0:5 causes changes that are less than 0:3!. The
width of the original prior is optimal according to the
empirical Bayes criterion—that is, it is the width
suggested by the size of finite-a deviations observed
in our simulation data.

(iv) Add more/fewer "=m"h terms in z: Increasing the
number of terms in the expansion for z from Nz ¼ 4
to 6 changes nothing by more than 0:1!. Decreasing
to Nz ¼ 3 also has no effect. Again the width of the
prior is optimal according to the empirical Bayes
criterion.

(v) Include more/fewer moments: Keeping all moments
4 # n # 18 changes nothing by more than 0:5! and
reduces errors slightly for everything other than mb,
where the errors are cut almost in half: mbð10Þ ¼
3:623ð15Þ GeV or mbðmbÞ ¼ 4:170ð13Þ GeV, both
for nf ¼ 5. We continue to restrict ourselves to mo-
ments with n # 10 because these are the only mo-
ments for which we have exact third-order
perturbation theory. Keeping just n ¼ 4, 6 gives al-

most identical results for mc and #MS, with almost
the same errors, but doubles the error on mb.

(vi) Omit simulation data: The coarsest two lattice spac-
ings (configuration sets 1–5) affect our results only
weakly. Leaving these out shifts no result by more
than 0:5! and leaves errors almost unchanged.
Leaving out the smallest lattice spacing, however,
increases errors significantly (almost double for
#MS), while still shifting central values by less than
0:5!.

(vii) Add large masses: Including cases with am"h
> 1:95

from Table II leads to poor fits. The excluded data,
however, do not deviate far from the best-fit lines.
For example, the points marked with an & in Fig. 1
are for the largest mass we studied, corresponding to
m"h

¼ 9:15 GeV (last line in Table II). Although
am"h

is too large for this case to be included in our
fit, the values of Rn=rn are only slightly below the fit
results.

V. NONPERTURBATIVE mb=mc

It is possible to extract the ratio of quark masses mb=mc

directly, without using the moments and without using
perturbation theory. This provides an excellent nonpertur-
bative check on our results from the moments.
Ratios of quark masses are UV cutoff independent and

therefore the ratio of MS masses

mbð$; nfÞ
mcð$; nfÞ

¼ m0b

m0c
þOð#sa

2m2
bÞ (39)

for any $ and nf, where m0b and m0c are the bare quark
masses in the lattice quark action that give correct masses
for the "c and "b, respectively. We obtain accurate mass
ratios from this relationship by extrapolating to a ¼ 0. We
used such a method recently to determine mc=ms [11].
Here we have to modify our earlier method slightly

because we cannot reach the b-quark mass directly, but
rather must simultaneously extrapolate to the b mass and
the continuum limit. This is most simply done by deter-
mining the functional dependence of the ratio

wðm"h
; aÞ ( 2m0h

m"h

(40)

on the "h mass and the lattice spacing. The ratio of MS
masses is then given by the experimental masses of the "c

and "b and the equation:

mbð$; nfÞ
mcð$; nfÞ

¼ mexp
"b wðmexp

"b ; 0Þ
mexp

"c wðmexp
"c ; 0Þ

: (41)

It might seem simpler to fit m0h directly, rather than the
ratio w; but using w significantly reduces the m"h

depen-
dence (and therefore our extrapolation errors), and also

FIG. 3 (color online). Lattice-spacing dependence of Rn for
masses m"h

within 5% of m"c
and moments n ¼ 4, 6, 8, and 10.

The dashed lines show our fit for the average of these masses,
and the points at a ¼ 0 are the continuum extrapolations of our
data.

HIGH-PRECISION c AND b MASSES, AND QCD . . . PHYSICAL REVIEW D 82, 034512 (2010)

034512-9

ratio to results with no gluon 
field improves disc. errors

extrapolate to a=0 and compare 
to contnm pert. th.

J J

t

Rn,cont =
m�c

2mc(µ)

CP
k

CP,0
k

CP
k

CP,0
K

= 1 +
X

ci�
i
s(µ)

n =
2k + 2

nf = 2 + 1



Fit first 4 moments 
simultaneously, gives                 

m�c

2mc(µ)
�s(µ)

Result: 
mc(mc) = 1.273(6)GeV
error dominated by unknown 
higher orders in pert. th. 

Further check:  
compare vector moments 
(after normalising current) 
to those extracted from Re+e�

7

Set mca
⇣

GV
4

Z2a2

⌘1/2 ⇣
GV

6
Z2a4

⌘1/4 ⇣
GV

8
Z2a6

⌘1/6 ⇣
GV

10
Z2a8

⌘1/8

1 0.622 0.5399(1) 1.2162(1) 1.7732(1) 2.2780(1)
2 0.63 0.5339(1) 1.2054(1) 1.7581(1) 2.2584(1)
2 0.66 0.5135(1) 1.1692(1) 1.7081(1) 2.1941(1)
3 0.617 0.5434(1) 1.2223(1) 1.7817(1) 2.2888(1)
4 0.413 0.7586(1) 1.6351(1) 2.3887(2) 3.0952(2)
5 0.273 1.0681(1) 2.2705(2) 3.3454(3) 4.3601(4)
6 0.193 1.4323(3) 3.0397(5) 4.4990(7) 5.8738(8)

TABLE IV: Results in lattice units for time moments of the
J/⇤ correlator as defined in eq. (10). We give results for n=4,
6, 8 and 10.

(GV
4 )1/2 (GV

6 )1/4 (GV
8 )1/6 (GV

10)
1/8

(amc)
2 extrapolation 0.18 0.18 0.16 0.16

statistics 0.05 0.04 0.03 0.03
lattice spacing 0.32 0.51 0.43 0.30
sea quark extrapolation 0.14 0.13 0.12 0.12
M�c tuning 0.15 0.18 0.17 0.16
Z 1.23 0.61 0.41 0.31
electromagnetism 0.3 0.2 0.1 0.05
Total (%) 1.3 0.9 0.7 0.5

TABLE V: Complete error budget for the time moments of
the J/⇤ correlator as a percentage of the final answer.

Re+e� = ⌃(e+e� � hadrons)/⌃pt [22, 23]. The values,
extracted from experiment by [22] and appropriately nor-
malised for the comparison to ours, are:

(M exp
1 4!/(12⇧2e2c))

1/2 = 0.3142(22)GeV�1

(M exp
2 6!/(12⇧2e2c))

1/4 = 0.6727(30)GeV�1

(M exp
3 8!/(12⇧2e2c))

1/6 = 1.0008(34)GeV�1

(M exp
4 10!/(12⇧2e2c))

1/8 = 1.3088(35)GeV�1. (12)

Our results from lattice QCD have approximately double
the error of the experimental values but together these
results provide a further test of QCD to better than 1.5%.

C. �(J/⇤ � �⇥c)

The radiative decay of the J/⌥ meson to the ⌅c re-
quires the emission of a photon from either the charm
quark or antiquark and a spin-flip, so it is an M1 transi-
tion. Because it is sensitive to relativistic corrections this
rate is hard to predict in nonrelativistic e⇥ective theories
and potential models (see, for example, [24, 25]) Here
we use a fully relativistic method in lattice QCD with
a nonperturbatively determined current renormalisation
and so none of these issues apply. In addition, of course,
the lattice QCD result is free from model-dependence.
The quantity that parameterises the nonperturbative

QCD information (akin to the decay constant of the pre-
vious section) is the vector form factor, V (q2), where q2

is the square of the 4-momentum transfer from J/⌥ to
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FIG. 4: Results for the 4th, 6th, 8th and 10th time moments
of the charmonium vector correlator shown as blue points and
plotted as a function of lattice spacing. The errors shown (the
same size or smaller than the points) include (and are domi-
nated by) uncertainties from the determination of the current
renormalization factor, Z, that are correlated between the
points. The data points have been corrected for c quark mass
mistuning and sea quark mass e⇥ects, but the corrections are
smaller than the error bars (the value for the deliberately
mistuned c mass on set 2 is not shown). The blue dashed
line with grey error band displays our continuum/chiral fit.
Experimental results determined from Re+e� (eq. (12)) are
plotted as the black points at the origin o⇥set slightly from
the y-axis for clarity.

⌅c. The form factor is related to the matrix element of
the vector current between the two mesons by:

⇥⌅c(p⇥)|c⇥µc|J/⌥(p)⇤ = 2V (q2)

(MJ/⌃ +M⌅c)
�µ�⇥⇤p⇥�p⇥⇤J/⌃,⇤

(13)
Note that the right-hand-side vanishes unless all the vec-
tors are in di⇥erent directions. Here we use a normalisa-
tion for V (q2) appropriate to a lattice QCD calculation
in which the vector current is inserted in one c quark line
only and the quark electric charge (2e/3) is taken as a
separate factor. The decay rate is then given by [8]:

�(J/⌥ � ⌅c⇥) = �QED
64|q|3

27(M⌅c +MJ/⌃)2
|V (0)|2, (14)

where it is the form factor at q2 = 0 that contributes be-
cause the real photon is massless. |q| is the corresponding
momentum of the ⌅c in the J/⌥ rest-frame.

C. McNeile et al, HPQCD,1004.4285 

HPQCD, 1208.2855, 1403.1778 

expt

AND

Agreement is a 1% test 
of (lattice ) QCD. Gives:

lattice and expt errors similar size

see also ETMC, 1111.5252 

µ = 3mc

acµ = 14.4(4)⇥ 10�10



Current-current correlator method -HISQ  HPQCD, 
1004.4285

• Repeat calcln for                     inc. ultrafine lattices
7

upon Bayesian ideas [17]. In this procedure we minimize
an augmented ⇧2 function of the form

⇧2 =
�

in,jm

�Rni (⌅�2
R )in,jm �Rmj +

�

⇥

⇤⇧2
⇥ (32)

where:

�Rni ⇥ Rlatt
ni �Rn(µi, m�hi, ai, Nam); (33)

the Rlatt
n come from Table II with corrections from

Eqs. (26), (28) and (30); fit function Rn(. . .) is defined
by Eq. (15); and ⌅2

R is the error covariance matrix for
the Rlatt

n . The sums i, j are over the 22 sets of lattice
spacings and quark masses; the sums n, m range over of
the moments 4, 6, 8, 10.

Function Rn(µi, m�hi, ai, Nam) depends upon a large
number of parameters, all of which are varied in the fit
to minimize ⇧2. Priors ⇤⇧2

⇥ are included for each of these:

• parameters zj , with prior Eq. (13), from the 1/m�h

expansion of z(µ/mh, m�h);

• parameters c(n)
ij , with prior Eq. (17), from the

finite-lattice spacing corrections;

• unknown perturbative coe⇤cients rnj , with prior
Eq. (21) (evolved to µ/mh =3);

• coupling parameter log(�0), with prior Eq. (22);

• ⇥4 in the QCD ⇥-function, with prior Eq. (25);

• lattice spacings ai for each gluon configuration set,
with priors specified by simulation results for r1/a
(Table I) and the current value for r1 (Eq. (10));

• values for am�hi, with priors specified by our sim-
ulation results (Table II).

The renormalization scales µi are obtained from the ratio
µ/mh = 3, simulation results for m�h , and Eq. (7). We
take Nam =30 for our final results.

B. Results

We fit our simulation data for the reduced mo-
ments Rlatt

n (Table II) using fit function Rn(. . .)
(Eq. (15)) with Nam = 30, as discussed in the previous
section. The best-fit values for parameters zj give us the
mass-ratio function z(µ/mh = 3, m�h) (Eq. (7)), which
we plot in Figure 1. We also show our simulation re-
sults there for Rlatt

n /rn, together with the best-fit lines
for each lattice spacing. Results are shown for the three
moments that depend upon z, 5 di⇥erent lattice spac-
ings, and quark masses ranging from below the c mass
almost to the b mass. The simulation data were all fit
simultaneously, using the same functions z(3, m�h) and
�MS(µ) (with µ = 3m�h/(2z)) for all moments. The fits
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FIG. 1: Function z(µ/mh = 3, m�h)�m�h/(2mh) as a func-
tion of m�h . The solid line, plus gray error envelope, shows
the a = 0 extrapolation obtained from our fit. This is com-
pared with simulation results for Rn/rn for n = 6, 8, 10 from
our 5 di�erent lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. Dashed
lines for smaller lattice spacings extend further to the right.
The points marked by an “x” are for the largest mass we
tried (last line in Table II); these are not included in the fit
because am�h is too large. Finite-a errors become very small
for the larger-n moments, causing points from di�erent lattice
spacings to overlap.

are excellent, with ⇧2/88 = 0.19 for the 88 data pieces of
simulation data we fit.

Evaluated at m�c = 2.985(3) GeV [24], the mass-
ratio function is z(3, m�c) = 1.507(7). Combining this
with Eq. (9) and perturbation theory, we can obtain the
following results for the MS c-quark mass at di⇥erent
scales:

mc(3mc, nf = 3) = 0.991(5) GeV, (34)
mc(3 GeV, nf = 4) = 0.986(6) GeV,

mc(mc, nf = 4) = 1.273(6) GeV.

Similarly at m�b = 9.395(5) GeV [25], the mass-ratio
function is z(3, m�b)=1.296(8), and we obtain the follow-
ing results for the MS b-quark mass at di⇥erent scales:

mb(3mb, nf = 3) = 3.623(22) GeV. (35)
mb(10 GeV, nf = 5) = 3.618(25) GeV,

mb(mb, nf = 5) = 4.165(23) GeV.
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FIG. 5: Updated values for the 5-flavor �MS at the Z-meson
mass from each of 22 di�erent short-distance quantities built
from Wilson loops. The gray band indicates a composite av-
erage, 0.1184(6). ⇥2 per data point is 0.3.

VII. CONCLUSIONS

In this paper, we improve significantly on our previous
determinations of the QCD coupling and c-quark mass
from heavy-quark correlators. This is principally due to
the inclusion of a new, smaller lattice spacing in our anal-
ysis. We also generated results for a variety of quark
masses near mc, allowing us to interpolate more accu-
rately to the physical value of mc. New third-order per-
turbation theory makes R10 as useful now as R4, R6, and
R8 were in the earlier paper. Finally, in this paper, we
fit multiple moments simultaneously, determining con-
sistent values simultaneously for both the QCD coupling
and the quark masses for all moments. Previously we ex-
amined each moment or ratio of moments independently,
extracting mcs or �MSs independently of each other. Our

3 4 5 6 7 8 9
m�h
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)) µ =
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mh/2

FIG. 6: z(µ/mh, m�h) versus m�h for three di�erent values
of µ/mh. The curve for µ = 3mh comes from the best fit
to the moments. The other curves are obtained by evolving
perturbatively from µ=3mh.
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FIG. 7: Simulation results for reduced moments Rn with n=
6, 8, 10 as functions of m�h for 5 di�erent lattice spacings.
The dashed lines show the corresponding behavior of our fit
function, with the best-fit parameters. The curves for smaller
lattice spacings extend further to the right. The solid lines
show the a=0 limit of our best fit.

new results,

mc(3 GeV, nf = 4) = 0.986(6) GeV (47)
�MS(MZ , nf = 5) = 0.1183(7),

agree well with our older results of 0.986(10) GeV and
0.1174(12), respectively [1].

The much heavier b quark is usually analyzed using ef-
fective field theories like NRQCD or the static-quark ap-
proximation. By using very small lattice spacings and the
very highly improved HISQ discretization for the heavy
quarks, we are able to extend our analysis almost to the
b-quark mass, using the same relativistic discretization
that we use for c and lighter quarks. A 1.5% extrapo-
lation of z(3, mh), from the largest m�h used in our fits
to m�b , gives us a new, accurate determination of the
b-quark mass,

mb(10 GeV, nf = 5) = 3.618(25) GeV. (48)

Can determine                  for  
heavy quarks - extrapolate  
(slightly) to b.

b

mq � mc

c
mh/m�h

Agrees well with contnm 
results using 
              

Re+e�

m
nf=5
b (mb) = 4.164(23)GeV

key error is now extrapoln in a



Update and improved method 
Use improved nf = 2+1+1 gluon field configs, more accurate 
lattice spacing determination etc etc.  
Determine mc at higher scales by using multiple mh
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mh(µ)

mc(µ)
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D. nf = 4 Lattice Results

We fit all of the reduced moments from our simulation
data — with lattice spacings from 0.12 fm to 0.06 fm, and
n = 4, 6, 8 and 10 in Table III — simultaneously to for-
mula (12–16) by adjusting fit parameters described in the pre-
vious sections. The fit is excellent with a �2 per degree of
freedom of 0.51 for 92 pieces of data (p-value is 1.0).

The fit has two key physics outputs. One is a new result for
the running coupling constant:

↵
MS

(5 GeV, nf = 4) = 0.2128(25). (35)

To compare with our old determination and other determi-
nations, we use perturbation theory to add b quarks to the
sea [27], with mb(mb) = 4.164(23) GeV [2], and evolve to
the Z mass (91.19 GeV) to get

↵
MS

(MZ , nf = 5) = 0.11822(74). (36)

This agrees well with 0.1183(7) from our nf = 3 analysis [2].
It also agrees well with the current world average 0.1185(6)
from the Particle Data Group [28].

The second important physics output is the c quark’s mass,
whose value at µ = 5 GeV is a fit parameter:

mc(µ, nf = 4) =

8
><

>:

0.8905(56) GeV µ = 5GeV

0.9851(63) GeV µ = 3GeV

1.2715(95) GeV µ = mc(µ),

(37)

where we have used Eq. (21) to evolve our result to other
scales for comparison with other determinations. These
again agree well with our previous nf = 3 analysis [2],
which gave 0.986(6) GeV for the mass at 3 GeV. The errors
for mc(3 GeV) and ↵

MS

(MZ) are correlated, with correla-
tion coefficient 0.19.

We use our result from mc to calculate the mass renormal-
ization factors

Zm(µ) ⌘ mc(µ)

m
0c

(38)

that relate MS masses to bare lattice masses for each config-
uration. These factors can be used to convert the bare mass
for any quark to its MS equivalent. We tabulate these results,
with µ = 3 GeV, for our configurations in Table II. These
Zm values are much more accurate than can be obtained from
order ↵s lattice QCD perturbation theory [29], but they agree
qualitatively and suggest that higher-order corrections from
lattice perturbation theory are small.

Our results confirm that a perturbative treatment of c quarks
in the sea, as in our previous paper, is correct, at least to our
current level of precision.

Our result at µ = mc has a larger error because ↵
MS

in
the mass evolution equation (Eq. (21)) becomes fairly large
at that scale (↵

MS

⇡ 0.4) and quite sensitive to uncertainties
in its value. We use the coupling from our fit for this evolu-
tion. Were we instead to use the Particle Data Group’s (more
accurate) ↵

MS

, our value for mc(mc) would be

mc(mc, nf = 4) = 1.2733(76) GeV. (39)

1.0 1.5 2.0 2.5 3.0
mh/mc

0.85
0.90
0.95
1.00

m
c(

3m
h)

n = 10

FIG. 1. The c quark mass mc(µ = 3mh) as determined from mo-
ments with heavy-quark masses ranging from mc to 2.9mc. The
data points show results obtained by substituting nonperturbative
simulation values for R̃n into Eq. (40), after correcting for mistun-
ings of the sea-quark masses (using the fit). Errors are about the
size of the plot symbols, or smaller. Results are shown for three
lattices spacings: 0.12 fm (green points, through mh/mc = 1.2),
0.09 fm (blue points, through mh/mc = 1.8), and 0.06 fm (red
points, through mh/mc = 2.9). The dotted lines show our fits to
these data points. The gray band shows the values expected from our
best-value mc(5GeV) = 0.8905(56)GeV evolved perturbatively to
the other scales.

In any case, it is probably better to avoid such low scales, if
possible.

Note that our c mass comes from moments whose heavy-
quark mass varies from mh = mc to mh = 3mc. Each (non-
perturbative) ˜Rn with n � 6, for each heavy-quark mass mh,
gives an independent estimate of the c mass:

mc(3mh) =

rn(↵
MS

(3mh), µ = 3mh)

˜Rn

. (40)

The extent to which these estimates agree with each other is
shown in Figure 1, where the nonperturbative results (data
points) are compared with our best-fit result for mc(5 GeV)

evolved perturbatively to other scales using Eq. (21) (gray
band). As expected, finite a2 errors are larger for smaller val-
ues of n and larger values of mh [2, 30]. Taking account of
these errors, agreement between different determinations of
the mass is excellent.

The dominant sources of error for our results are listed in
Table IV. The most important systematics are due to the trun-
cation of perturbation theory and our extrapolation to a2

= 0.
As in our previous analysis, the a2 extrapolations are not

mc(mc) =

1.2715(95)GeV



Good consistency between lattice methods and actions
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a
µ

= (g
µ

� 2)/2, of the µ lepton from coupling to a b
quark loop i.e. that part of the ‘hadronic vacuum polar-
isation’ (HVP) contribution that comes from b quarks.
We use the method developed in [49] which converts
the moments determined above to q2-derivatives of the
hadronic vacuum polarisation and thereby determines,
via Padé approximants, the q2-dependence of the inte-
grand required for the contribution to a

µ

. We obtain
ab

µ

= 0.271(37) ⇥ 10�10 from our lattice results. This
can be compared with the result using our approach
but substituting the values for the moments extracted
from experiment as given in eq. (26) of 0.307(2) ⇥ 10�10

or that from using QCD perturbation theory [50] of
0.29(1) ⇥ 10�10.

Our error is sizeable and dominated by NRQCD sys-
tematics. This is because the small q2 region domi-
nates the integral for the contribution to a

µ

and the
integrand there is given almost entirely by the fourth
time-moment, which is the one we can determine least
well using NRQCD. The b-quark piece of the HVP con-
tribution to a

µ

is very small, however, compared to the
total hadronic vacuum polarisation contribution which is
⇡ 700 ⇥ 10�10. Its error is therefore not critical to the
issue of reducing the theoretical uncertainty in the Stan-
dard Model result for a

µ

. It is nevertheless important
to have results for this quantity from lattice QCD as a
cross-check of other methods. Results using a relatvistic
formalism for the b quark should give smaller errors in
future for this quantity. See [51] for preliminary results
using the HISQ formalism [21] for the b quarks.

D. Mass of the b quark

We can also use our calculation of the time-moments
of the vector current-current correlator to determine the
mass of the b quark. The continuum expression for the
moments in eq. (17) contains a perturbative series di-
vided by powers of the b-quark mass in the MS scheme.
To obtain the continuum moments from the lattice mo-
ments requires multiplication by the current renormali-
sation factor Z

V

(as in Section III C) and this introduces
significant uncertainties in using the moments directly.
We can cancel Z

V

, however, in ratios of successive mo-
ments (in which the mass does not cancel) and this gives a
much more accurate and robust method, because at the
same time we can reduce other systematic errors. We
also multiply by the ratio of the spin-average of ⌥ and
⌘

b

kinetic masses to twice the lattice b quark mass. This
cancels factors of the lattice b quark mass and allows us
to extract the b quark mass in the MS scheme as a ra-
tio to the spin-average of experimental ⌥ and ⌘

b

masses.
The relevant equations are given in eqs. (19) and (20),
yielding.

m
b

(µ) =
M

⌥,⌘

b

2


R

n�2

r
n

R
n

r
n�2

�
1/2 2m

b

M
kin

(27)
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FIG. 4: The b quark mass in the MS scheme determined
from our calculation of time-moments of the vector current-
current correlator as a function of the moment number, n, in
eq. (27). Blue open circles are for the fine set 5 lattices and
the red open circles for the very coarse set 1. The errors on
the points are dominated by the uncertainty in the value of
k1, the current correction coe�cient.

Set am
b

c4 n = 14 n = 18 n = 22
1 3.297 1.0 4.187(11) 4.193(6) 4.192(5)
1 3.297 1.22 4.188(11) 4.194(5) 4.193(6)
1 3.42 1.0 4.189(13) 4.197(6) 4.193(5)
2 3.25 1.22 4.192(11) 4.197(6) 4.196(5)
3 2.66 1.0 4.209(10) 4.210(7) 4.208(4)
4 2.62 1.20 4.210(10) 4.214(7) 4.211(4)
5 1.91 1.0 4.207(9) 4.204(5) 4.202(3)

TABLE VIII: Values for the b quark mass in GeV in the MS
scheme, determined from eq. (27) for n = 14, 18 and 22 on
each set of configurations that we use. The errors are those
from the uncertainty in k1; statistical errors are very small
here.

Table VIII gives our results from eq. (27) for n = 16,
18 and 20 on all sets and Fig. 4 shows results from sets
1 and 5 as a function of n. We expect to see m

b

reach a
plateau as n increases when internal spatial momenta in
the current-current correlator become small enough for
our NRQCD vector current to be a good approximation
to the continuum vector current and hence to the con-
tinuum perturbation theory. In a similar way to that for
Z

V

(see Appendix A) we see that this happens down to
moment numbers as low as n = 8 in eq. (27) on the fine
lattices, but needs somewhat higher moment numbers on
the coarser lattices. The results for the two, very di↵er-
ent, lattice spacing values agree where they have both
reached a plateau.

We consequently take results from n = 18 for our cen-
tral value and plot these as a function of a2 in Fig. 5.
There is very little dependence on sea-quark mass or lat-
tice spacing. Indeed, as Table VIII also shows, there is
very little dependence on the c

4

coe�cient in the NRQCD

12

0 0.005 0.01 0.015 0.02 0.025
a2(fm2)

4.1

4.15

4.2

4.25

4.3

4.35

4.4

m
b(

µ
=

4.
18

,n
f

=
4)

G
eV ml/ms = 0.2

ml physical

FIG. 5: The b quark mass in the MS scheme determined from
our calculation of time-moments of the vector current-current
correlator using eq. (27) with n = 18. Blue open circles are
from sets 1, 3 and 5 and red open squares from sets 2 and
4. The errors on the points include uncorrelated errors only
and are dominated by the uncertainty in the value of k1, the
current correction coe�cient. The grey band is the physical
value we obtain with its total error, including the error from
lattice spacing and quark mass dependence obtained from a fit
to the points as well as additional systematic errors described
in the text.

action or on the lattice b quark mass (since this depen-
dence is largely cancelled by M

kin

). The errors on the
masses are dominated by that from the uncertainty in
the value of k

1

; statistical errors are negligible here. As
expected, the error from changing k

1

falls as n increases
and the moments become more nonrelativistic.

To determine a physical value for the mass, we again
fit the results as a function of lattice spacing and sea-
quark mass, allowing for am

b

-dependent NRQCD errors.
We use eq. (21) for the appropriate hadronic parameter,
which here is m

b

�M
⌥,⌘

b

/2. This is the ‘binding energy’
of the meson which is the consequence of the QCD in-
teractions that we include in our lattice calculation. The
physical value for m

b

(µ = 4.18 GeV, n
f

= 4) that we ob-
tain from our fit is 4.207(21) GeV. The result from fitting
values from n = 14 or 22 are the same within a fraction of
1�. To the error on the physical value we must add sys-
tematic errors (which are correlated between the points
on Fig. 5 and therefore not included there) from:

• continuum perturbation theory. The perturbative
coe�cients in our reduced perturbation theory are
well-behaved, as shown in Table III. For m

b

we use
the square root of the ratio of the perturbative se-
ries for successive moments, reducing further the
size of the coe�cients multiplying powers of ↵

s

that
can appear. We take an error on m

b

of 0.25↵3

s

/2
(the factor of 2 for the square root) which is 0.15%
(7 MeV). This covers uncertainties from missing
↵4

s

terms as well as uncertainty in the ↵3

s

coe�-
cients [42] and small uncertainties at lower order

from mass e↵ects as discussed in Section II E. A
test of this error is simply to miss out the ↵3

s

co-
e�cients from our perturbation theory. This in-
creases the value of m

b

we obtain almost uniformly
by 5 MeV, so a 7 MeV error on including the ↵3

s

coe�cients is conservative.

• value of ↵
s

. Changing the value of ↵
s

(m
b

) by 1�
in our perturbative formulae changes the value of
m

b

we obtain by 3 MeV (in the opposite direction
to the change in ↵

s

).

• NRQCD systematics. Our NRQCD action is im-
proved almost completely through ↵

s

v4, but we
are missing v4 terms in the vector current. Fol-
lowing Appendix A we estimate the e↵ect of this
at v4 ⇡ (1/n)2. For n = 18 this gives 0.3% (13
MeV). We can test this estimate by determining
masses from using the leading-order current alone
(i.e. missing v2 corrections). We find a shift (down-
wards) of 30 MeV on very coarse lattices and 8 MeV
on fine lattices. So an uncertainty of 13 MeV is con-
servative for missing higher order v4 terms in the
current.

• b quark mass tuning. This is negligible, as is clear
from the entries seen in Table VIII for set 1 at dif-
ferent masses.

Electromagnetic e↵ects appear in the value of the spin-
average of ⌥ and ⌘

b

masses that we use for tuning. This
has negligible impact (1 MeV) on the result for m

b

. The
e↵ect of missing b quarks in the sea will be accounted for
using perturbation theory below.

Adding the errors above in quadrature gives m
b

(µ =
4.18 GeV, n

f

= 4) = 4.207(26) GeV. To compare results
at the conventional point we must convert this to an
n

f

= 5 quark mass at its own scale and we do this using
perturbation theory [52]. We obtain

m
b

(m
b

, n
f

= 5) = 4.196(23) GeV, (28)

with the error squeezed down by the evolution of the
mass to its own scale, but we include an error from un-
certainties in this evolution. Evolving to 10 GeV gives
a value m

b

(10GeV, n
f

= 5) = 3.650(25) GeV. The error
budget for m

b

at the scale 10 GeV is given in Table V.

IV. CONCLUSIONS

We have presented here the first complete nonpertur-
bative calculation of the leptonic widths of the ⌥ and ⌥0

using full lattice QCD including u, d, s and c quarks in
the sea. These are hard calculations to do in lattice QCD
because they require an accurate matching of the lattice
QCD vector current to the continuum vector current and
because they are short-distance quantities, sensitive to
discretisation errors. We use a matching method which

nf = 2+1+1 HISQ sea 
quarks

Larger moment numbers 
more nonrelativistic - use 
18

mb(mb, nf = 5) = 4.196(25)GeV
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the ⇥c and ⇥b and the equation:

mb(µ, nf )
mc(µ, nf )

=
mexp

�b
w(mexp

�b
, 0)

mexp
�c w(mexp

�c , 0)
. (41)

It might seem simpler to fit m0h directly, rather than
the ratio w; but using w significantly reduces the m�h

dependence (and therefore our extrapolation errors), and
also makes our results quite insensitive to uncertainties
in our values for the lattice spacing.

We parameterize function w with an expansion mod-
eled after the one we used to fit the moments:

w(m�h ,a) = Zm(a)

⇧
1 +

Nw↵

n=1

wn

⇤
2�
m�h

⌅n
⌃

/ (42)

⌥

 1 +
Nam↵

i=1

Nw↵

j=0

cij

�am�h

2

⇥2i
⇤

2�
m�h

⌅j
�

⌦ ,

where, as for the moments,

i + j � max(Nam, Nw). (43)

Coe⇤cients cij and wn are determined by fitting function
w(m�h , a) to the values of 2am0h/(am�h) from Table II.
The fit also determines the parameters Zm(a), one for
each lattice spacing, which account for the running of
the bare quark masses between di⇥erent lattice spacings.

The finite-a dependence is smaller here than for the
moments, because the ⇥h is nonrelativistic [8], and the
variation with m�h stronger (twice that of z(µ/mh =
3, m�h)). So here we use priors

cij = 0± 0.05 (44)
wn = 0± 4

Zm(a) = 1± 0.5

with Nw =8. We again take Nam =30, although identical
results are obtained with Nam = 15.

Our fit results are illustrated by Figure 4 which plots
the ratio m0h/m�h divided by m0c/m�c for a range of
⇥h masses. Our data for di⇥erent lattice spacings is com-
pared with our fit, and with the a = 0 limit of our fit
(solid line). The fit is excellent, with ⇤2/22 = 0.42 for
the 22 pieces of data we fit (we again exclude cases with
am�h > 1.95). Using the ⇥c and ⇥b masses from Sec-
tion IVB, and Eq. (41) with the best-fit values for the
parameters, we obtain finally

m0b

m0c
⇥ 4.49(4) as a⇥0 (45)

=
mb(µ, nf )
mc(µ, nf )

,

which agrees well with our result from the moments
(Eq. (36)).

m�c 4 6 8 m�b

m�h (GeV)

0.8
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FIG. 4: Ratio m0h/m�h divided by m0c/m�c (which we ap-
proximate by w(m�c , a)/2 from our fit) as a function of m�h .
The solid line shows the a=0 extrapolation obtained from our
fit. This is compared with simulation results for our 4 small-
est lattice spacings, together with the best fits (dashed lines)
corresponding to those lattice spacings. The point marked by
an “x” is for the largest mass we tried (last line in Table II);
this was not included in the fit because am�h is too large.

VI. �MS FROM WILSON LOOPS

In a recent paper [26], we presented a very accurate
determination of the QCD coupling from simulation re-
sults for Wilson loops. Here we want to compare those
results to the value we obtain from heavy-quark corre-
lators. First, however, we must update our earlier anal-
ysis to take account of the new value for r1 [10] given
in Eq. (10) and improved values for r1/a [13] given in Ta-
ble I. (The Wilson-loop paper uses some additional con-
figuration sets: from Table II in that paper, sets 1, 6, 9,
and 11 whose new r1/as are 1.813(8), 2.644(3), 5.281(8)
and 5.283(8), respectively.) We have rerun our earlier
analysis, updating r1, r1/a, and the c and b masses. The
results are shown in Figure 5. Combining results as in the
earlier paper we obtain a final value from the Wilson-loop
quantities of

�MS(MZ , nf = 5) = 0.1184(6), (46)

with ⇤2/22 = 0.3 for the 22 quantities in the figure.
This agrees very well with the result in the earlier pa-
per, �MS(MZ) = 0.1183(8), but has a slightly smaller
error, as expected given the smaller error in r1. This
new value also agrees well with our very di⇥erent de-
termination from heavy-quark correlators (Eq. (38)). A
breakdown of the error into its di⇥erent sources can be
found in Table IV of [26] (reduce the r1 and r1/a errors
in that table by half to account for the improved values
used here).

completely nonperturbative determination of ratio gives: 
mb

mc
= 4.49(4)
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method - test of pert. th. . Also tested nf=2+1+1
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FIG. 4. Results for the MS c mass and coupling from nf = 4 fits
that treat perturbative coefficients beyond order N as fit parameters,
with priors specified by Eq. (24). The gray bands and dashed lines
indicate the means and standard deviations of our final results, which
correspond to N = 3.
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FIG. 5. The ratio of the c and s quark masses as a function of the
squared lattice spacing (in units of the bare c mass). The data come
from simulations at lattice spacings of 0.15, 0.12, 0.09 and 0.06 fm,
after tuning the s and c masses to reproduce physical values for the ⌘s
and ⌘c masses on each ensemble. The errors for the data points are
highly correlated, as they come primarily from uncertainties in w0,
m⌘s , and m⌘c . The red dashed line shows our fit, which has a �2 per
degree of freedom of 0.21 for 9 degrees of freedom (p-value of 0.99).
The black dashed line and gray band show the mean value and stan-
dard deviation for our result extrapolated to zero lattice spacing.

III. mc/ms FROM nf = 4

As discussed above (Section II A), we can use lattice QCD
to extract ratios of MS quark masses completely nonperturba-
tively [32], since ratios of quark masses are scheme and scale

independent: for example,

m
0c

m
0s

����
lat

=

mc(µ, nf )

ms(µ, nf )

����
MS

+ O((amc)
2↵s). (42)

While ratios of light-quark masses can be obtained from chiral
perturbation theory, only lattice QCD can produce nonpertur-
bative ratios involving heavy quarks. These ratios are very
useful for checking mass determinations that rely upon per-
turbation theory, as illustrated in [2]. They also allow us to
leverage precise values of light-quark masses from very accu-
rately determined heavy-quark masses.

In [32] we used nonperturbative simulations, with nf = 3

sea quarks, to determine the s quark’s mass from the c quark’s
mass and the ratio mc/ms. We repeat that analysis here, but
now for nf = 4 sea quarks, using the tuned values of the bare
s and c masses for each of our lattice ensembles: amtuned

0s and
amtuned

0c in Table II, respectively. We expect

amtuned

0c

amtuned

0s

=

mc

ms

 
1 + hm

�msea

uds

ms
+ ha2,m

�msea

uds

ms

✓
mc

⇡/a

◆
2

+h
1

↵s(⇡/a)

✓
mc

⇡/a

◆
2

+

Na2X

j=2

hj

✓
mc

⇡/a

◆
2j
1

A ,

(43)

where again we ignore �msea

c and �m2 dependence since they
are negligible. We fit the data from Table II using this formula
with the following fit parameters and priors:

hm = 0 ± 0.1, ha2,m = 0 ± 0.1, (44)
h
1

= 0 ± 6, hj = 0 ± 2 (j > 1). (45)

The extrapolated value mc/ms is also a fit parameter. We set
Na2

= 5, but get identical results for any Na2 � 2.
The result of this fit is presented in Fig. 5, which shows

the a2 dependence of the lattice results. The sensitivity of our
new results to a2 is about half what we saw in our previous
analysis. Our new fit is excellent and gives a final result for
the mass ratio of:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (46)

The leading sources of error in this result are listed in Ta-
ble IV. These are dominated by statistical errors and uncer-
tainty in the ⌘s mass. Many other potential sources of error,
such as uncertainties in the lattice spacing, largely cancel in
the ratio.

Note that the discussion in Appendix A and Eq. (A19),
in particular, imply that the leading effect of mistuned sea-
quark masses cancels in ratios of quark masses. This is sub-
stantiated by our fit which makes parameter hm negligibly
small (�0.0080(34)). Setting hm = 0 shifts our result for
mc/ms by only �/7.

Our result is a little more than a standard deviation lower
than the recent result, 11.747(19)

�
+59

�43

�
, computed by the Fer-

milab/MILC collaboration (using many of the same configu-
rations we use) [33]. Our analysis uses a different scheme for

mc

ms
= 11.652(65)
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FIG. 7. Recent lattice QCD determinations of the QCD coupling
(nf = 5) evaluated at scale MZ . The gray band is the weighted
average of the results: 0.1185(4). We include our jj result for nf =
3 in the average, but not our new nf = 4 result since systematic
errors are correlated between the two results. The results shown here
come from this paper and [37–41].

In this paper, we have redone our earlier nf = 3 analysis [2]
using simulations with nf = 4 sea quarks: u, d, s and c. Our
new results,

mc(3 GeV, nf = 4) = 0.9851(63) GeV (52)
↵
MS

(MZ , nf = 5) = 0.11822(74), (53)

agree well with our earlier results of 0.986(6) GeV and
0.1183(7), suggesting that contributions from c quarks in
the sea are reliably estimated using perturbation theory (as
expected). Our c mass is about 1.8� lower than the re-
cent result from the ETMC collaboration, also using nf =

4 simulations but with a different method [36]: they get
mc(mc) = 1.348(42) GeV, compared with our nf = 4 re-
sult of 1.2715(95) GeV.

Our new result for the coupling (Eq. (53)) agrees with re-
sults from other collaborations, who use different methods
from us (and each other). Recent results (nf = 3 or 4) are
summarized in Fig. 7.

We updated our earlier nf = 3 analysis [32] of the ra-
tio mc/ms of quark masses using our nf = 4 data. This
is a relatively simple analysis of data from Table II. Our new
value is:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (54)

It agrees well with our previous result 11.85(16), but is much
more accurate. We compare our new result with others in
Fig. 8.

We obtain a new estimate for the s mass by combining our
new result for mc/ms with our new estimate of the c mass
(Eq. (52), converted from nf = 4):

ms(µ, nf = 3) =

(
93.6(8) MeV µ = 2GeV

84.7(7) MeV µ = 3GeV.
(55)
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MILC 1407.3772

HPQCD this paper

Durr 1108.1650
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FIG. 8. Lattice QCD determinations of the ratio of the c and s quarks’
masses. The ratios come from this paper and references [32, 33, 36,
42, 43]. The gray band is the weighted average of the three nf = 4
results: 11.700(46).

FIG. 9. Lattice QCD determinations of the MS s-quark mass
ms(3GeV, nf = 3) in MeV. These masses come this paper and
references [32, 36, 44–46] The gray band is the weighted average of
these results: 84.1(5)MeV.

This brings the error below 1% for the first time. Values for
ms(µ, nf = 4) are smaller by about 0.2 MeV. Our new result
agrees with our previous analysis and also with other recent
nf = 3 or 4 analyses:

ms(2 GeV) =

8
><

>:

92.4(1.5) MeV HPQCD [32],
99.6(4.3) MeV ETMC [36],
95.5(1.9) MeV Durr et al [44],

ms(3 GeV) = 81.64(1.17) MeV RBC/UKQCD [45].
(56)

We compare these nonperturbative results in Fig. 9, together
with an earlier perturbative determination from [46].

Finally, we have also updated our previous (nf = 3) non-

Good consistency 
between different lattice  
actions



 Combining mc  and  mc/ms leads to 1% accuracy in ms

11

FIG. 7. Recent lattice QCD determinations of the QCD coupling
(nf = 5) evaluated at scale MZ . The gray band is the weighted
average of the results: 0.1185(4). We include our jj result for nf =
3 in the average, but not our new nf = 4 result since systematic
errors are correlated between the two results. The results shown here
come from this paper and [37–41].

In this paper, we have redone our earlier nf = 3 analysis [2]
using simulations with nf = 4 sea quarks: u, d, s and c. Our
new results,

mc(3 GeV, nf = 4) = 0.9851(63) GeV (52)
↵
MS

(MZ , nf = 5) = 0.11822(74), (53)

agree well with our earlier results of 0.986(6) GeV and
0.1183(7), suggesting that contributions from c quarks in
the sea are reliably estimated using perturbation theory (as
expected). Our c mass is about 1.8� lower than the re-
cent result from the ETMC collaboration, also using nf =

4 simulations but with a different method [36]: they get
mc(mc) = 1.348(42) GeV, compared with our nf = 4 re-
sult of 1.2715(95) GeV.

Our new result for the coupling (Eq. (53)) agrees with re-
sults from other collaborations, who use different methods
from us (and each other). Recent results (nf = 3 or 4) are
summarized in Fig. 7.

We updated our earlier nf = 3 analysis [32] of the ra-
tio mc/ms of quark masses using our nf = 4 data. This
is a relatively simple analysis of data from Table II. Our new
value is:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (54)

It agrees well with our previous result 11.85(16), but is much
more accurate. We compare our new result with others in
Fig. 8.

We obtain a new estimate for the s mass by combining our
new result for mc/ms with our new estimate of the c mass
(Eq. (52), converted from nf = 4):

ms(µ, nf = 3) =

(
93.6(8) MeV µ = 2GeV

84.7(7) MeV µ = 3GeV.
(55)

FIG. 8. Lattice QCD determinations of the ratio of the c and s quarks’
masses. The ratios come from this paper and references [32, 33, 36,
42, 43]. The gray band is the weighted average of the three nf = 4
results: 11.700(46).
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FIG. 9. Lattice QCD determinations of the MS s-quark mass
ms(3GeV, nf = 3) in MeV. These masses come this paper and
references [32, 36, 44–46] The gray band is the weighted average of
these results: 84.1(5)MeV.

This brings the error below 1% for the first time. Values for
ms(µ, nf = 4) are smaller by about 0.2 MeV. Our new result
agrees with our previous analysis and also with other recent
nf = 3 or 4 analyses:

ms(2 GeV) =

8
><

>:

92.4(1.5) MeV HPQCD [32],
99.6(4.3) MeV ETMC [36],
95.5(1.9) MeV Durr et al [44],

ms(3 GeV) = 81.64(1.17) MeV RBC/UKQCD [45].
(56)

We compare these nonperturbative results in Fig. 9, together
with an earlier perturbative determination from [46].

Finally, we have also updated our previous (nf = 3) non-
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FIG. 4. Results for the MS c mass and coupling from nf = 4 fits
that treat perturbative coefficients beyond order N as fit parameters,
with priors specified by Eq. (24). The gray bands and dashed lines
indicate the means and standard deviations of our final results, which
correspond to N = 3.

FIG. 5. The ratio of the c and s quark masses as a function of the
squared lattice spacing (in units of the bare c mass). The data come
from simulations at lattice spacings of 0.15, 0.12, 0.09 and 0.06 fm,
after tuning the s and c masses to reproduce physical values for the ⌘s
and ⌘c masses on each ensemble. The errors for the data points are
highly correlated, as they come primarily from uncertainties in w0,
m⌘s , and m⌘c . The red dashed line shows our fit, which has a �2 per
degree of freedom of 0.21 for 9 degrees of freedom (p-value of 0.99).
The black dashed line and gray band show the mean value and stan-
dard deviation for our result extrapolated to zero lattice spacing.

III. mc/ms FROM nf = 4

As discussed above (Section II A), we can use lattice QCD
to extract ratios of MS quark masses completely nonperturba-
tively [32], since ratios of quark masses are scheme and scale

independent: for example,

m
0c

m
0s

����
lat

=

mc(µ, nf )

ms(µ, nf )

����
MS

+ O((amc)
2↵s). (42)

While ratios of light-quark masses can be obtained from chiral
perturbation theory, only lattice QCD can produce nonpertur-
bative ratios involving heavy quarks. These ratios are very
useful for checking mass determinations that rely upon per-
turbation theory, as illustrated in [2]. They also allow us to
leverage precise values of light-quark masses from very accu-
rately determined heavy-quark masses.

In [32] we used nonperturbative simulations, with nf = 3

sea quarks, to determine the s quark’s mass from the c quark’s
mass and the ratio mc/ms. We repeat that analysis here, but
now for nf = 4 sea quarks, using the tuned values of the bare
s and c masses for each of our lattice ensembles: amtuned

0s and
amtuned

0c in Table II, respectively. We expect

amtuned
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=

mc

ms
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�msea

uds
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(43)

where again we ignore �msea

c and �m2 dependence since they
are negligible. We fit the data from Table II using this formula
with the following fit parameters and priors:

hm = 0 ± 0.1, ha2,m = 0 ± 0.1, (44)
h
1

= 0 ± 6, hj = 0 ± 2 (j > 1). (45)

The extrapolated value mc/ms is also a fit parameter. We set
Na2

= 5, but get identical results for any Na2 � 2.
The result of this fit is presented in Fig. 5, which shows

the a2 dependence of the lattice results. The sensitivity of our
new results to a2 is about half what we saw in our previous
analysis. Our new fit is excellent and gives a final result for
the mass ratio of:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (46)

The leading sources of error in this result are listed in Ta-
ble IV. These are dominated by statistical errors and uncer-
tainty in the ⌘s mass. Many other potential sources of error,
such as uncertainties in the lattice spacing, largely cancel in
the ratio.

Note that the discussion in Appendix A and Eq. (A19),
in particular, imply that the leading effect of mistuned sea-
quark masses cancels in ratios of quark masses. This is sub-
stantiated by our fit which makes parameter hm negligibly
small (�0.0080(34)). Setting hm = 0 shifts our result for
mc/ms by only �/7.

Our result is a little more than a standard deviation lower
than the recent result, 11.747(19)

�
+59

�43

�
, computed by the Fer-

milab/MILC collaboration (using many of the same configu-
rations we use) [33]. Our analysis uses a different scheme for
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FIG. 7. Recent lattice QCD determinations of the QCD coupling
(nf = 5) evaluated at scale MZ . The gray band is the weighted
average of the results: 0.1185(4). We include our jj result for nf =
3 in the average, but not our new nf = 4 result since systematic
errors are correlated between the two results. The results shown here
come from this paper and [37–41].

In this paper, we have redone our earlier nf = 3 analysis [2]
using simulations with nf = 4 sea quarks: u, d, s and c. Our
new results,

mc(3 GeV, nf = 4) = 0.9851(63) GeV (52)
↵
MS

(MZ , nf = 5) = 0.11822(74), (53)

agree well with our earlier results of 0.986(6) GeV and
0.1183(7), suggesting that contributions from c quarks in
the sea are reliably estimated using perturbation theory (as
expected). Our c mass is about 1.8� lower than the re-
cent result from the ETMC collaboration, also using nf =

4 simulations but with a different method [36]: they get
mc(mc) = 1.348(42) GeV, compared with our nf = 4 re-
sult of 1.2715(95) GeV.

Our new result for the coupling (Eq. (53)) agrees with re-
sults from other collaborations, who use different methods
from us (and each other). Recent results (nf = 3 or 4) are
summarized in Fig. 7.

We updated our earlier nf = 3 analysis [32] of the ra-
tio mc/ms of quark masses using our nf = 4 data. This
is a relatively simple analysis of data from Table II. Our new
value is:

mc(µ, nf )

ms(µ, nf )

= 11.652(65). (54)

It agrees well with our previous result 11.85(16), but is much
more accurate. We compare our new result with others in
Fig. 8.

We obtain a new estimate for the s mass by combining our
new result for mc/ms with our new estimate of the c mass
(Eq. (52), converted from nf = 4):

ms(µ, nf = 3) =

(
93.6(8) MeV µ = 2GeV

84.7(7) MeV µ = 3GeV.
(55)

FIG. 8. Lattice QCD determinations of the ratio of the c and s quarks’
masses. The ratios come from this paper and references [32, 33, 36,
42, 43]. The gray band is the weighted average of the three nf = 4
results: 11.700(46).

FIG. 9. Lattice QCD determinations of the MS s-quark mass
ms(3GeV, nf = 3) in MeV. These masses come this paper and
references [32, 36, 44–46] The gray band is the weighted average of
these results: 84.1(5)MeV.

This brings the error below 1% for the first time. Values for
ms(µ, nf = 4) are smaller by about 0.2 MeV. Our new result
agrees with our previous analysis and also with other recent
nf = 3 or 4 analyses:

ms(2 GeV) =

8
><

>:

92.4(1.5) MeV HPQCD [32],
99.6(4.3) MeV ETMC [36],
95.5(1.9) MeV Durr et al [44],

ms(3 GeV) = 81.64(1.17) MeV RBC/UKQCD [45].
(56)

We compare these nonperturbative results in Fig. 9, together
with an earlier perturbative determination from [46].

Finally, we have also updated our previous (nf = 3) non-
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TABLE IV. Error budget [31] for the c mass, QCD coupling, and
the ratios of quark masses mc/ms and mb/mc from the nf = 4
simulations described in this paper. Each uncertainty is given as a
percentage of the final value. The different uncertainties are added in
quadrature to give the total uncertainty. Only sources of uncertainty
larger than 0.05% have been listed.

mc(3) ↵MS(MZ) mc/ms mb/mc

Perturbation theory 0.3 0.5 0.0 0.0
Statistical errors 0.2 0.2 0.3 0.3

a2 ! 0 0.3 0.3 0.0 1.0
�msea

uds ! 0 0.2 0.1 0.0 0.0
�msea

c ! 0 0.3 0.1 0.0 0.0
mh 6= mc (Eq. (15)) 0.1 0.1 0.0 0.0

Uncertainty in w0, w0/a 0.2 0.0 0.1 0.4
↵0 prior 0.0 0.1 0.0 0.0

Uncertainty in m⌘s 0.0 0.0 0.4 0.0
mh/mc ! mb/mc 0.0 0.0 0.0 0.4

�m⌘c : electromag., annih. 0.1 0.0 0.1 0.1
�m⌘b : electromag., annih. 0.0 0.0 0.0 0.1

Total: 0.64% 0.63% 0.55% 1.20%

FIG. 2. Lattice-spacing dependence of reduced moments R̃n for
⌘h masses within 5% of m⌘c , and n = 4, 6, 8, 10. The dashed
lines show our fit, and the points at a = 0 are the continuum extrap-
olations of the lattice data.

large, as is clear from Figure 1 and also Figure 2. Also the de-
pendence of our results on the light sea-quark masses is quite
small and independent of the lattice spacing, as illustrated by
Figure 3.

Our results change by �/3 if we fit only the n = 4 and 6
moments, but the errors are 35% larger. Leaving out n = 4,
instead, leaves the c mass almost unchanged, but increases the
error in the coupling by 60% (with the same central value).
We limit our analysis to heavy quark masses with am

0h 
0.8, as in our previous analysis. Reducing that limit to 0.7, for
example, has no impact on the central values of results and
increases our errors only slightly (less than 10%).

We tested the reliability of our error estimates for the per-
turbation theory by refitting our data using only a subset of
the known perturbative coefficients. The results are presented
in Fig. 4, which shows values for mc(3 GeV) and ↵

MS

(MZ)

FIG. 3. Light sea-quark mass dependence of reduced moments R̃n

for mh = mc, and n = 4, 6, 8, 10. Results are shown for our two
coarsest lattices: a = 0.12 fm (three points in blue) and a = 0.09 fm
(two points in red). The dashed lines show the corresponding results
from our fit. Note that the slopes of the lines are independent of the
lattice spacing, as expected.

from fits that treat perturbative coefficients beyond order N
as fit parameters, with priors as in Eq. (24). Results from dif-
ferent orders agree with each other, providing evidence that
our estimates of truncation errors are reliable. This plot also
shows the steady convergence of perturbation theory as addi-
tional orders are added.

As a further test of perturbation theory, we refit our nonper-
turbative data treating the leading perturbative coefficients, �

0

and �
0

, in the evolution equations for the mass (Eq. (21)) and
coupling (Eq. (20)) as fit parameters with priors of 0 ± 1. The
fit gives

�
0

= 0.292(19) �
0

= 0.675(54), (41)

in good agreement with the exact results of 0.318 and 0.663,
respectively. So our nonperturbative results for the correlators
show clear evidence for the evolution of mc(µ) and ↵

MS

(µ)

as µ = 3mh varies from 3mc to 9mc.


