Quantum Optics and Lattice Gauge Systems

Collaborators:

J. Pachos (Leeds) B. Reznik (Tel-Aviv) A. Farace E. Zohar

Symposium in Effective Theories and Lattice Gauge Theory, IAS/TUM, Garching, May 19th, 2016

QUANTUM SIMULATORS

Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California 91107 Received May 7, 1981 1. INTRODUCTION

On the program it says this is a keynote speech—and I don't know what a keynote speech is I do not intend in any way to suggest what should

$$c_1 \,|\, 000...0 \rangle + c_2 \,|\, 000...1 \rangle + ... + c_{2^N} \,|\, 111...1 \rangle$$

MODEL

Model Hamiltonian

 $H = \dots$

QUANTUM SIMULATOR

Model Hamiltonian

 $H = \dots$

How does it work?

- Dynamics:
- Ground state:

QUANTUM SIMULATORS APPLICATIONS

Material Science

COLD ATOMS IN OPTICAL LATTICES

COLD ATOMS

Control: External fields

COLD ATOMS

MPQ

Cold atoms are described by simple quantum field theories:

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^2 + V(r) \right) \Psi_{\sigma} + u_{\sigma_i} \int \Psi_{\sigma_1}^{\dagger} \Psi_{\sigma_2}^{\dagger} \Psi_{\sigma_3} \Psi_{\sigma_4}$$

- We can have bosons or fermions (or both).
- We can have different internal states (spin).
- The external potential, V, and interaction coefficients, u, can be engineered using lasers, and electric and magnetic fields.
- In certain limits, one obtains effective theories that are interesting in other fields of Physics.

COLD ATOMS OPTICAL LATTICES

Laser standing waves: dipole-trapping

VOLUME 81, NUMBER 15

PHYSICAL REVIEW LETTERS

12 October 1998

Cold Bosonic Atoms in Optical Lattices

D. Jaksch, 1,2 C. Bruder, 1,3 J. I. Cirac, 1,2 C. W. Gardiner, 1,4 and P. Zoller 1,2

Laser standing waves: dipole-trapping

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^{2} + V(r) \right) \Psi_{\sigma} + u_{\sigma_{i}} \int \Psi_{\sigma_{1}}^{\dagger} \Psi_{\sigma_{2}}^{\dagger} \Psi_{\sigma_{3}} \Psi_{\sigma_{4}}$$

$$\frac{t}{U}$$
Lattice theory: Bose/Fermi-Hubbard model
$$H = -t\sum_{n} (a_n^{\dagger}a_{n+1} + h.c) + U\sum_{n} a_n^{\dagger 2} a_n^2$$

Laser standing waves: dipole-trapping

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^{2} + V(r) \right) \Psi_{\sigma} + u_{\sigma_{i}} \int \Psi_{\sigma_{1}}^{\dagger} \Psi_{\sigma_{2}}^{\dagger} \Psi_{\sigma_{3}} \Psi_{\sigma_{4}}$$

articles

Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms

Markus Greiner*, Olaf Mandel*, Tilman Esslinger†, Theodor W. Hänsch* & Immanuel Bloch*

* Sektion Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4/III, D-80799 Munich, Germany, and Max-Planck-Institut für Quanten optik, D-85748 Garching, Germany

† Quantenelektronik, ETH Zürich, 8093 Zurich, Switzerland

$$\blacksquare \text{Bosons/Fermions:} \ H = -\sum_{\substack{\\\sigma,\sigma'}} \left(t_{\sigma,\sigma'} a_{n,\sigma}^{\dagger} a_{m,\sigma'} + h.c \right) + \sum_{\substack{n\\\sigma,\sigma'}} U_{\sigma,\sigma'} a_{n,\sigma}^{\dagger} a_{n,\sigma'}^{\dagger} a_{n,\sigma'} a_{n,\sigma$$

■ Spins:

$$H = -\sum_{\substack{\langle n,m \rangle \\ \sigma,\sigma'}} \left(J_x S_n^x S_m^x + J_y S_n^y S_m^y + J_z S_n^z S_m^z \right) + \sum_{\substack{n \\ \sigma,\sigma'}} B_n S_n^z$$

HIGH ENERGY PHYSICS?

QUANTUM SIMULATIONS OF HEP MODELS

$$S = \int \overline{\Psi} (i\gamma^{\mu}\partial_{\mu} - m)\Psi - Q \int A_{\mu} \overline{\Psi} \gamma^{\mu} \Psi - \frac{1}{4} \int F_{\mu\nu} F^{\mu\nu} + \dots$$

- Matter + Gauge Fields
- Relativistic theory
- Gauge invariant
- Hamitonian formulation: $i\partial_t |\Psi\rangle = H |\Psi\rangle$ • Gauss law $G(x) |\Psi\rangle = 0$ [H, G(x)] = 0

QUANTUM SIMULATION HEP MODELS INGREDIENTS

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
J. B. Kogut, Rev. Mod. Phys. 55, 775 (1983).

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^{2} + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\mu}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{\sigma} + \dots$$
Lattice Fermion-gauge field Gauge field coupling dynamics

Matter (Fermions): can move

Gauge fields (Bosons): Static

Matter (Fermions): can move

Gauge fields (Bosons): Static

Matter (Fermions): can move

Gauge fields (Bosons): Static

Example: compact-QED in 1D

• Hamiltonians:

$$H_{M} = \sum_{\mathbf{n}} M_{\mathbf{n}} \psi_{\mathbf{n}}^{\dagger} \psi_{\mathbf{n}}$$

$$H_{int} = \epsilon \sum_{\mathbf{n},k} \left(\psi_{\mathbf{n}}^{\dagger} e^{i\phi_{\mathbf{n},k}} \psi_{\mathbf{n}+\hat{\mathbf{k}}} + \psi_{\mathbf{n}+\hat{\mathbf{k}}}^{\dagger} e^{-i\phi_{\mathbf{n},k}} \psi_{\mathbf{n}} \right)$$

$$H_{KS} = H_{E} = \frac{g^{2}}{2} \sum_{n,k} E_{n}^{2}$$

 $[E_{\mathbf{n},k},\phi_{\mathbf{m},l}] = -i\delta_{\mathbf{nm}}\delta_{kl}$ (ie, compact)

• Gauss law:
$$G_n | phys \rangle = 0$$

• Gauge invariance: $e^{-i\theta G_n} H e^{i\theta G_n} = H$
 $G_n = E_{n+1} - E_n - \psi_n^{\dagger} \psi_n$

SCHWINGER MODEL

■Fermions:

 $\{c_n, c_n^{\dagger}\} = \{d_n, d_n^{\dagger}\} = 1$

 $H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^2 + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\mu}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{\sigma'} + \dots$

• Even sites: hole = particle

• Odd sites: fermion = antiparticle

Staggered Fermions:

L. Susskind, Phys. Rev. D 16, 3031 (1977).
G. 't Hooft, Nucl. Phys. B 75, 461 (1974)

Bosons:

internal states

$$[a_n, a_n^{\dagger}] = [b_n, b_n^{\dagger}] = 1$$

• Schwinger rep:

$$\begin{split} L_{+} &= a^{\dagger}b \\ L_{z} &= \frac{1}{2} \left(N_{a} - N_{b} \right) \\ \ell &= \frac{1}{2} \left(N_{a} + N_{b} \right) \end{split} \qquad \begin{array}{c} | >> 1 \\ \square >> 1 \\ \square >> 1 \\ L_{+} \approx | e^{i\phi} \\ L_{z} \approx i\partial_{\phi} \end{split}$$

• If | is small (eg 2 atoms), we obtain a truncated version

• One can also use a single atom with few internal levels (Z_M is the gauge group)

Bosons:

internal states

$$[a_n, a_n^{\dagger}] = [b_n, b_n^{\dagger}] = 1$$

Schwinger rep:

$$L_{+} = a^{\dagger}b$$
$$L_{z} = \frac{1}{2} (N_{a} - N_{b})$$
$$\ell = \frac{1}{2} (N_{a} + N_{b})$$

 $H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^2 + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\mu}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma'}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{\sigma'} \Phi_{\sigma'} + \dots$

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^2 + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\mu}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma'}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{\sigma'} \Phi_{\sigma'} + \dots$$

conserves angular momentum locally

→ Gauge invariance

$$H_{int} \quad \frac{1}{\sqrt{\ell \left(\ell+1\right)}} \psi_n^{\dagger} a_n^{\dagger} b_n \psi_{n+1} \approx \psi_n^{\dagger} e^{i\phi_n} \psi_{n+1}$$

QUANTUM SIMULATION SCHWINGER MODEL 1+1

Physical processes:

р---е

non-interacting

vacuum

Preparation:

QUANTUM SIMULATION SCHWINGER MODEL 1+1

- Confinement
- Excitations: vector + scalar
- Time-dependent phenomena
- First experiments: few bosonic atoms

Plaquette interactions:

$$H_{B} = -\frac{2\epsilon^{4}}{\lambda^{3}} \sum_{\mathbf{n}} \left(U_{\mathbf{n},1} U_{\mathbf{n}+\hat{1},2} U_{\mathbf{n}+\hat{2},1}^{\dagger} U_{\mathbf{n},2}^{\dagger} + h.c. \right) = -\frac{4\epsilon^{4}}{\lambda^{3}} \sum_{\mathbf{n}} \cos\left(\phi_{\mathbf{n},1} + \phi_{\mathbf{n}+\hat{1},2} - \phi_{\mathbf{n}+\hat{2},1} - \phi_{\mathbf{n},2}\right)$$

Non-abelian gauge theories:

$$\begin{split} H_E &= \frac{g^2}{2} \sum_{\mathbf{n},k,a} \left(E_{\mathbf{n},k} \right)_a \left(E_{\mathbf{n},k} \right)_a \\ H_B &= -\frac{1}{g^2} \sum_{\text{plaquettes}} \left(\text{Tr} \left(U_1 U_2 U_3^{\dagger} U_4^{\dagger} \right) + h.c. \right) \\ H_{int} &= \epsilon \sum_{\mathbf{n},k} \left(\psi_{\mathbf{n}}^{\dagger} U_{\mathbf{n},k}^{\mathbf{r}} \psi_{\mathbf{n}+\hat{\mathbf{k}}} + h.c. \right) \end{split}$$

TROTTER DECOMPOSITION:

$$e^{-iHT} = \left(e^{-iH\frac{T}{N}}\right)^N = \left(e^{-i\sum_j H_j\frac{T}{N}}\right)^N \approx_{N\gg 1} \left(\prod_j e^{-iH_j\frac{T}{N}}\right)^N$$

MEDIATING INTERACTIONS:

Earlier work: Taggliacozzo et al

Cold bosons in optical lattices

- Mott insulator superfluid transition
- Exchange interaction (2nd order perturbation theory)
- Dynamics
- Anderson-Higgs mechanism in 2D
- Cold fermions in optical lattices
 - Mott insulator in 2D

Cold fermions and bosons in optical lattices

Mean-field dynamics

Techniques

- Tuning of interactions: Magnetic/optical Feschbach resonances
- Lattice geometry
- Time of flight measurements
- Single-site addressing: initializaton
- Single-site measurement

Challanges: temperature, decoherence, control ...

QUANTUM SIMULATION HIGH ENERGY MODELS

IC, Maraner, Pachos, PRL **105**, 19403 (2010) Zohar, IC, Reznik, PRL **107**, 275301 (2011) Zohar, IC, Reznik, PRL **109**, 125302 (2012) Zohar, IC, Reznik, PRL **110**, 125304 (2013) Zohar, IC, Reznik, PRA **88**, 023617 (2013) Zohar, Farace, Reznik, JIC, in preparation

See also:

Kapit, Mueller, PRA**83**, 033625 (2011) Banerjee,..., Wiese, Zoller, PRL**109**, 175302 (2013) Banerjee,..., Wiese, Zoller, PRL**110**, 125303 (2013) Gauge fields: Lewenstein et al

Problem:

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^{2} + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\mu}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{$$

choose V(r), u, v, etc such that (in some limit), we have

$$i\partial_t |\Psi\rangle = H |\Psi\rangle$$

$$G(x) |\Psi\rangle = 0$$

$$[H, G(x)] = 0$$

corresponding to

$$S = \int \overline{\Psi} (i\gamma^{\mu}\partial_{\mu} - m)\Psi - Q \int A_{\mu} \overline{\Psi} \gamma^{\mu} \Psi - \frac{1}{4} \int F_{\mu\nu} F^{\mu\nu} + \dots$$

Matter + Gauge Fields

$$S = \int \overline{\Psi} (i\gamma^{\mu}\partial_{\mu} - m)\Psi - Q \int A_{\mu} \overline{\Psi} \gamma^{\mu} \Psi - \frac{1}{4} \int F_{\mu\nu} F^{\mu\nu} + \dots$$

We need bosonic and fermionic atoms We need interactions among themselves

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^2 + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\mu}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma'}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{\sigma$$

Relativistic

$$S = \int \overline{\Psi} (i\gamma^{\mu} \partial_{\mu} - m) \Psi - Q \int A_{\mu} \overline{\Psi} \gamma^{\mu} \Psi - \frac{1}{4} \int F_{\mu\nu} F^{\mu\nu} + \dots$$

$$H = \int \Psi_{\sigma}^{\dagger} \left(-\nabla^{2} + V(r) \right) \Psi_{\sigma} + u \int \Phi_{\mu}^{\dagger} \Phi_{\sigma'} \Psi_{\sigma'}^{\dagger} \Psi_{\sigma'} + v \int \Phi_{\sigma}^{\dagger} \Phi_{\sigma'}^{\dagger} \Phi_{\sigma'} \Phi_{\sigma'} \Phi_{\sigma'} + \dots$$

