Axion cosmology (how lattice contributes)

Z. Fodor

University of Wuppertal

May 21, 2016, Technical University Munich

Phys.Lett. B752 (2016) 175; thermodynamics & T=0 lattice QCD

< 17 ×

Outline

- 2 Topological susceptibility
- 3 Quenched results
- 4 Dynamical case
- 5 Outlook and Summary

3 1 4 3

Strong CP Problem

Full QCD can include an effective CP breaking θ term:

$$\mathcal{L}_{QCD} = \sum_{f} \bar{\psi}_{f} (D_{\mu} \gamma^{\mu} + m_{f}) \psi_{f} + \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} - i\theta \frac{g^{2}}{32\pi^{2}} \tilde{F}^{a}_{\mu\nu} F^{a}_{\mu\nu}$$

with $-\pi < \theta \leq \pi$, so naturally $\theta \sim \mathcal{O}(1)$

From experiments: $|\theta| < 10^{-10}$, unnatural \rightarrow fine-tuning?

Antrophic principle does not help: $|\theta| < 10^{-2}$ would be still fine

Peccei-Quinn solution

interpret/introduce θ as a dynamical field with minimum at 0

- as phase of a global U(1) symmetric scalar field ϕ
- with spontaneous symmetry breaking potential

redefinition of the angular mode as $arg(\phi) := \theta_{eff}$

$$\mathcal{Z} = \int \mathcal{D} A_{\mu} exp(-S_{QCD} - i heta_{eff} \cdot g^2/32\pi^2 \cdot ilde{F}^a_{\mu
u} F^a_{\mu
u})$$

Z reduced, F raised by phase cancellation unless $\theta_{eff}=0$ one can get the mass of the axion: $m_A^2 \propto \langle Q^2 \rangle \propto \chi_t$ effective potential for ϕ has a tilt & a minimum for $0 = \theta_{eff} = \arg(\phi) = 0$

$$\mathcal{L}_{a} = \partial_{\mu}\phi^{*}\partial^{\mu}\phi - \frac{\lambda}{8}\left(\phi^{*}\phi - f_{a}^{2}\right)^{2} + \chi_{t}\frac{|\phi|}{f_{a}}\cos(\theta_{eff})$$

Massive Modes

Two massive oscillations of ϕ

- heavy "string" mode in magnitude; with mass $m_s \approx \sqrt{\lambda} f_a$
- light "axion" mode in phase; with mass $m_a \approx \sqrt{\chi_t}/f_a$

Given χ_t , cosmology gives an abundance of axions

Axions can provide substantial/total amount of dark matter

Two axion production mechanisms:

- dynamics and decay of string/wall networks
- misalignment (sole ingredient in the pre-inflation case)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Topological Structures

Spontaneous symmetry breaking + causality:

different θ_{eff} in causally disconnected patches

 \Rightarrow Strings

with QCD potential $\theta_{eff} \rightarrow 0$ everywhere

 \Rightarrow Walls between Strings

String/Wall Networks

- string-like defects arise and form networks
 → axion radiation
- when χ_t becomes relevant, formation of walls between strings \rightarrow axion radiation
- walls accelerate annihilation of topological defects \rightarrow axion radiation

 χ_t influences string dynamics, needed as input for total axion production only in case of a post-inflationary Peccei-Quinn symmetry breaking

Misalignment

- alignment of misaligned neighbouring patches → axion radiation
- when χ_t becomes relevant, θ_{eff} "rolls" down to $\theta = 0$ \rightarrow axion radiation
- χ_t influences field dynamics, needed as input for total axion production

Evolution in the expanding universe

Cosmological Models

Both production mechanisms

- depend on χ_t
- depend on the dynamics over cosmological time scales

 \Rightarrow need $\chi_t(t)$ over cosmological time scales

- χ_t is temperature dependent (not explicitly on time)
- the equation of state of QCD gives T(t) for cosmology

 \Rightarrow need $\chi_t(T)$, p(T) for cosmologically relevant temperatures as we will see T up to few GeV is required: lattice QCD

- 「同下」 (三下) - 三下

Trace anomaly continuum result

all of our point with various lattice spacings comparison with hotQCD (which is the basis of s95p-v1) result until 2014 ↓ result after 2014 ↓

long standing discrepancy (since 2005) finally disappeared

What We Know About $\chi_t(T)$

- Low $T \ll T_c$: χ PT
 - $\chi_t(T) \approx \chi_0$
 - $\chi_t \propto m_f$ \rightarrow very small χ_t

High $T \gg T_c$: dilute instanton gas approximation (DIGA) • $\chi_t(T) \sim (T/T_c)^{-b}$, $b \sim 7 - 8$ \rightarrow even smaller χ_t

DIGA is a factor of 10 off for the cosmologically relevant region (we observe it aposteriori) \Rightarrow lattice is needed

Quenched Study

How far can we go with conventional brute force?

 \rightarrow test it in the "cheap" quenched case

- learn how to control all errors and apply it for full QCD
- test bed to improve on the brute force strategy
- roughly the same temperature scaling as for full QCD
- estimate the costs for the full result

Previous lattice studies

- [Alles:1996nm,Gattringer:2002mr] etc. 1st gen results
- [Berkowitz:2015aua] large volume/statistics up to 2.5Tc
- [Kitano:2015fla] HMC up to 2T_c

Lattice Setup

Pure SU(3)

- Symanzik improved gauge action
- gluonic q(x) from clover field strength tensor $F_{\mu\nu}$
- update sweep: 1 heatbath + 4 overrelaxation

Parameters

- 0.1 $T_c \le T \le 4.0 T_c$
- $n_t = 5, 6, 8$
- spatial volume fixed in physical units $L_{x,y} = 2/T_c$
- $L_z = 2L_{x,y}$ to enable subvolume analysis

Simulations on the Wuppertal-QPACE machine

▲□→ ▲ □→ ▲ □→ □ □

Renormalization of χ

 $\chi(t)$ at finite Wilson-flow time is already renormalized [Luscher:2010iy]

- sufficient to perform a continuum limit at flow time fixed in physical units, e.g. t = w₀² (w₀²: flow time at which td/dt · [t²E(t)] = 0.3 [Borsanyi:2012zs])
- the choice of t influences the size of the lattice artefacts

< 同 > < 回 > < 回 > <

Flow dependence of $\chi(t)$

- $\chi(t)$ has weak dependence on the choice of t
- we choose $t = w_0^2 \approx (0.176 \text{ fm})^2$
- the finer the lattice the weaker the *t*-dependence

Continuum result: b=7.1(4)(2) & $\chi(4T_c)^{1/4}$ =17 MeV

Z. Fodor Axion cosmology (how lattice contributes)

Quenched Lattice \leftrightarrow DIGA

correct T dependence normalization off by $\mathcal{O}(10)$ fixed by comparison to lattice

how $\chi_t(T)$ determines m_A ? start with an m_A e.g. 30μ eV $m_A(T=0)$ gives the value of f_A

known: Hubble constant H(T) fix T_{osc} by $3H(T_{osc}) = m_A(T_{osc})$

using T_{osc} calculate the amount of dark matter

Calibrated guess for dynamical with DIGA

- dynamic case with DIGA
- quenched calibrated K-factor is $\mathcal{O}(10)$
- cosmology can be used axionic dark matter & m_A can be determined
- K-factor uncertainty means a factor two in m_A
- dream: predict m_A ADMX experiment: tune it (eventually even find it)

Unquenched OCD 2-loop RGI DIGA K = 1 (blue), $K = 9.22\pm0.6$ (grav) ($\kappa = 0.6-2$) IILM from Ref. [10] (dashed red)

About costs: quenched case

Cost of the conventional algorithm at relative error $\delta \chi_t$

$$costs \propto rac{1}{(\delta\chi_t)^2\chi_t(\mathcal{T})}$$

relative cost $(4T_c)/(1T_c)$ (our highest T was $4T_c$: not enough)

from measured
$$\chi_t(T)$$
 $4^{7.1} \approx 2 \times 10^4$ from measured $\delta\chi_t$ $10^5 - 10^6$

- quenched $\chi_t(T = 0)$ calculated \sim 20 years ago
- Moores law leads to a factor of $\sim 10^5$ in 24 years

 \Rightarrow Just possible to do (dynamical case is probably hard)

過 とう ヨ とう ヨ とう

About costs: dynamical QCD

Dynamic relative cost $(7T_c)/(1T_c)$ ($7T_c \sim 1200 \text{ MeV}$)

from estimated
$$\chi_t(T)$$
 $7^{7-8} \approx 10^6 - 10^7$ increasing τ_{int} with T $10^7 - 10^9$

• dynamic $\chi_t(T=0)$ in 2010, Moore factor of ~ 10

 \Rightarrow conventional dynamical study not possible (needs 35 years)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Literature: full QCD

Interesting result: [Bonati:2015vqz]

• brute force fully dynamic in the continuum up to $\approx 4 T_c$

Result: $b \sim 3$ unexpected (DIGA etc. $b \sim 8$) one order of magnitude shift for the axion dark matter window

crosses quenched result at $4T_c$ (for quenched $\chi_t^{1/4}(4T_c)=17$ MeV)

 \Rightarrow further study is obviously necessary

What did we learn?

Only quenched result, but

- up to $T = 4T_c$ with full systematic errors
- use to calibrate, estimate the costs of full QCD

Finite volume effects in subvolume method

Brute force method

- $\bullet\,$ this far, not further \to need new ideas
- particularly, since orders of magnitudes needed for full QCD

< 同 > < 回 > < 回 >

Topological Charge

Integral

$$Q = \int_{\mathcal{M}} \mathrm{d}^4 x q(x)$$

over the topological charge density

$$q(x) = \frac{1}{4\pi^2} \epsilon_{\mu\nu\rho\sigma} \text{tr} \left(F_{\mu\nu}(x) F_{\rho\sigma}(x) \right)$$

- $\bullet\,$ discretized in finite volume on $\mathcal{M}=\mathbb{T}^4$
- sectors with different *Q* separated by infinite action barrier in continuum
- problem for ergodicity of MC algorithms with small "step" size in field space

Topological Susceptibility

Integral of qq correlator

$$\chi = \int_{\mathcal{M}} \mathsf{d}^4 x \langle q(0) q(x)
angle$$

With global translation symmetry on $\mathcal{M} = \mathbb{T}^4$

$$\chi = rac{1}{V_4} \langle Q^2
angle$$

- measurement must sample sectors with $Q \neq 0$
- difficult close to continuum
- difficult when $\chi V_4 = \langle Q^2 \rangle \ll 1$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subvolume Trick [Brower:2014bqa]

Possible solution

- discretization of Q is finite volume effect
- continuous Q_{sub} on finite subvolumes of \mathbb{R}^4 and \mathbb{T}^4

• calculate
$$\chi_{sub} = \langle Q_{sub}^2 \rangle / V_{sub}$$

• make infinite V_{sub} limit instead of infinite V_4 limit

Quenched and T = 0: large χ

plausible, works

Dynamic or $T \neq 0$: small χ

- finite volume corrections are T independent
- corrections are larger than χ for reasonable volumes

Subvolume Trick - Finite volume corrections

$$T = 2T_c, N_t = 5, L_{sub} = L_z/2$$

correction scales like 1/L

Subvolume Trick 2

- step from $\chi = \int_{\mathcal{M}} d^4x \langle q(0)q(x) \rangle$ to $\chi = \langle Q^2 \rangle / V_4$ required translation invariance of $\mathcal{M} = \mathbb{T}^4$
- not valid for subvolume with boundary \Rightarrow finite volume correction
- large cancellations in integral of correlator \Rightarrow large finite volume error

Alternative:

- evaluate $\chi = \int_0^{L_{sub}} dz \int d^3x \langle q(L_{sub}/2, \vec{0})q(z, \vec{x}) \rangle$ directly
- correlator is only evaluated at distances in *z* smaller than $L_{sub}/2$ \Rightarrow reduced finite volume corrections

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Subvolume Trick 2 - Finite Volume corrections

$$T = 2T_c$$
, $N_t = 5$, $L_{sub} = L_z/2$, identical configs no 1/L

Results - Full Volume versus Subvolume

-