
Lattice QCD Study
of Excited Hadron Resonances

Colin Morningstar
Carnegie Mellon University

Effective Field Theories and Lattice Gauge Theory
TUM Insitute for Advanced Study, Garching, Germany

May 21, 2016



Spectrum of QCD

spectroscopy resurgence due to discovery of unexpected
charmonium XYZ states
GlueX and JLab Hall D search for hybrids, other exotics
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Key Points

crucial role of interpolating operators for excited-state studies in
lattice QCD
lower-lying multi-hadron levels must be dealt with
need to handle many quark lines: stochastic LapH method

level identification using
interpolating operators
finite-volume energies⇒
hadron resonance
properties: masses, decay
widths

focus: large 323 anisotropic lattices, mπ ∼ 240 MeV
scattering phase shifts from finite-volume energies
need for effective Hamiltonian approach
tetraquark operators
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Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

Cij(t) =
∑

n

Z(n)
i Z(n)∗

j e−Ent, Z(n)
j = 〈0| Oj |n〉

not practical to do fits using above form
define new correlation matrix C̃(t) using a single rotation

C̃(t) = U† C(τ0)−1/2 C(t) C(τ0)−1/2 U

columns of U are eigenvectors of C(τ0)−1/2 C(τD) C(τ0)−1/2

choose τ0 and τD large enough so C̃(t) diagonal for t > τD

effective energies
m̃eff
α (t) =

1
∆t

ln

(
C̃αα(t)

C̃αα(t + ∆t)

)
tend to N lowest-lying stationary state energies in a channel

2-exponential fits to C̃αα(t) yield energies Eα and overlaps Z(n)
j
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Correlator matrix toy model

Theorem: For every t ≥ 0, let λn(t) be the eigenvalues of an
N × N Hermitian correlation matrix C(t) ordered such that
λ0 ≥ λ1 ≥ · · · ≥ λN−1, then

lim
t→∞

λn(t) = bne−Ent
[
1 + O(e−t∆n)

]
,

bn > 0, ∆n = min
m6=n
|En − Em|.

Example: Ne = 200 eigenstates with energies

E0 = 0.20, En = En−1 +
0.08√

n
, n = 1, 2, . . . ,Ne − 1.

for N × N correlator matrix, N = 12, overlaps

Z(n)
j =

(−1)j+n

1 + 0.05(j− n)2 .
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Correlator matrix toy model (con’t)

toy model Ne = 200 with 12× 12 correlator matrix C(t)

left: effective energies of diagonal elements of correlator matrix
middle: effective energies of eigenvalues of C(t)

right: effective energies of eigenvalues of
C(τ0)−1/2 C(t) C(τ0)−1/2 for τ0 = 1
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Building blocks for single-hadron operators

building blocks: covariantly-displaced LapH-smeared quark fields
stout links Ũj(x)

Laplacian-Heaviside (LapH) smeared quark fields

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2

s + ∆̃
)

3d gauge-covariant Laplacian ∆̃ in terms of Ũ

displaced quark fields:

qA
aαj = D(j)ψ̃(A)

aα , qA
aαj = ψ̃

(A)

aα γ4 D(j)†

displacement D(j) is product of smeared links:

D(j)(x, x′) = Ũj1(x) Ũj2(x+d2) Ũj3(x+d3) . . . Ũjp(x+dp)δx′, x+dp+1

to good approximation, LapH smearing operator is

S = VsV†s
columns of matrix Vs are eigenvectors of ∆̃
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Extended operators for single hadrons

quark displacements build up orbital, radial structure

Φ
AB
αβ(p, t) =

∑
x eip·(x+ 1

2 (dα+dβ))δab qB
bβ(x, t) qA

aα(x, t)

Φ
ABC
αβγ(p, t) =

∑
x eip·xεabc qC

cγ(x, t) qB
bβ(x, t) qA

aα(x, t)

group-theory projections onto irreps of lattice symmetry group

Ml(t) = c(l)∗
αβ Φ

AB
αβ(t) Bl(t) = c(l)∗

αβγ Φ
ABC
αβγ(t)

definite momentum p, irreps of little group of p
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Importance of smeared fields

effective masses of
3 selected nucleon
operators shown
noise reduction of
displaced-operators
from link smearing
nρρ = 2.5, nρ = 16
quark-field
smearing
σs = 4.0, nσ = 32
reduces
excited-state
contamination
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Two-hadron operators

our approach: superposition of products of single-hadron
operators of definite momenta

cI3aI3b
paλa; pbλb

BIaI3aSa
paΛaλaia BIbI3bSb

pbΛbλbib

fixed total momentum p = pa + pb, fixed Λa, ia,Λb, ib
group-theory projections onto little group of p and isospin irreps
crucial to know and fix all phases of single-hadron operators for
all momenta

each class, choose reference direction pref
each p, select one reference rotation Rp

ref that transforms pref into p

efficient creating large numbers of two-hadron operators
generalizes to three, four, . . . hadron operators
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Quark line diagrams

temporal correlations involving our two-hadron operators need
slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!
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Stochastic estimation of quark propagators

do not need exact inverse of Dirac matrix K[U]

introduce Z4 noise vectors η in the LapH subspace

ηαk(t), t = time, α = spin, k = eigenvector number

solve K[U]X(r) = η(r) for each of NR noise vectors η(r), then
obtain a Monte Carlo estimate of all elements of K−1

K−1
ij ≈

1
NR

NR∑
r=1

X(r)
i η

(r)∗
j

variance reduction using noise dilution
dilution introduces projectors P(a), then define

η[a] = P(a)η, X[a] = K−1η[a]

to obtain Monte Carlo estimate with drastically reduced variance

K−1
ij ≈

1
NR

NR∑
r=1

∑
a

X(r)[a]
i η

(r)[a]∗
j

C. Morningstar Excited States 11



The effectiveness of stochastic LapH

comparing use of lattice noise vs noise in LapH subspace
ND is number of solutions to Kx = y
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Correlators and quark line diagrams

baryon correlator

Cll ≈
1

NR

∑
r

∑
dAdBdC

B(r)[dAdBdC]
l (ϕA, ϕB, ϕC)B(r)[dAdBdC]

l
(%A, %B, %C)∗

express diagrammatically

meson correlator
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More complicated correlators

two-meson to two-meson correlators (non isoscalar mesons)
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Quantum numbers in toroidal box

periodic boundary conditions in
cubic box

not all directions equivalent⇒
using JPC is wrong!!

label stationary states of QCD in a periodic box using irreps of
cubic space group even in continuum limit

zero momentum states: little group Oh

A1a,A2ga,Ea, T1a, T2a, G1a,G2a,Ha, a = g, u
on-axis momenta: little group C4v

A1,A2,B1,B2,E, G1,G2

planar-diagonal momenta: little group C2v

A1,A2,B1,B2, G1,G2

cubic-diagonal momenta: little group C3v

A1,A2,E, F1,F2,G

include G parity in some meson sectors (superscript + or −)
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Spin content of cubic box irreps

numbers of occurrences of Λ irreps in J subduced

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2

J G1 G2 H J G1 G2 H
1
2 1 0 0 9

2 1 0 2
3
2 0 0 1 11

2 1 1 2
5
2 0 1 1 13

2 1 2 2
7
2 1 1 1 15

2 1 1 3
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Ensembles and run parameters

focusing on two Monte Carlo ensembles
(323|240): 412 configs 323 × 256, mπ ≈ 240 MeV, mπL ∼ 4.4
(243|390): 551 configs 243 × 128, mπ ≈ 390 MeV, mπL ∼ 5.7

anisotropic improved gluon action, clover quarks (stout links)
QCD coupling β = 1.5 such that as ∼ 0.12 fm, at ∼ 0.035 fm
strange quark mass ms = −0.0743 nearly physical (using kaon)
work in mu = md limit so SU(2) isospin exact
generated using RHMC, configs separated by 20 trajectories

stout-link smearing in operators ξ = 0.10 and nξ = 10

LapH smearing cutoff σ2
s = 0.33 such that

Nv = 112 for 243 lattices
Nv = 264 for 323 lattices

source times:
4 widely-separated t0 values on 243

8 t0 values used on 323 lattice
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I = 1, S = 0, T+
1u channel

effective energies m̃eff(t) for levels 0 to 24 (323|240)

energies obtained from two-exponential fits (B. Fahy, PhD thesis)

0.0

0.1

0.2

0.3

0.4

0.5

m
ef

f

0.0

0.1

0.2

0.3

0.4

0.5

m
ef

f

0.0

0.1

0.2

0.3

0.4

0.5

m
ef

f

0.0

0.1

0.2

0.3

0.4

0.5

m
ef

f

5 10 15 20

time

0.0

0.1

0.2

0.3

0.4

0.5

m
ef

f

5 10 15 20

time
5 10 15 20

time
5 10 15 20

time
5 10 15 20

time

C. Morningstar Excited States 18



I = 1, S = 0, T+
1u energy extraction, continued

effective energies m̃eff(t) for levels 25 to 49
energies obtained from two-exponential fits
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Level identification

overlaps for various operators
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Staircase of energy levels

stationary state energies I = 1, S = 0, T+
1u channel on (323 × 256)

anisotropic lattice

Levels
0

1

2

3

4

m
/m

K

single-hadron dominated

two-hadron dominated

significant mixing

T1up
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Summary and comparison with experiment

right: energies of qq-dominant states as ratios over mK for
(323|240) ensemble
left: experiment (masses and widths)

C. Morningstar Excited States 22



Issues

infinite-volume resonance parameters from finite-volume
energies

Luscher method too cumbersome, restrictive in applicability
use of hadron effective Hamiltonian techniques

address presence of 3 and 4 meson states
in other channels, address scalar particles in spectrum

scalar probe states need vacuum subtractions
hopefully can neglect due to OZI suppression
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Bosonic I = 1, S = 0, A−1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, E+
u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, T−1g channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, T−1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators

C. Morningstar Excited States 27



Bosonic I = 1
2 , S = 1, T1u channel

kaon channel: effective energies m̃eff(t) for levels 0 to 8
results for 323 × 256 lattice for mπ ∼ 240 MeV
two-exponential fits (Y.C. Jhang, PhD thesis)
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Bosonic I = 1
2 , S = 1, T1u channel

effective energies m̃eff(t) for levels 9 to 17
results for 323 × 256 lattice for mπ ∼ 240 MeV
two-exponential fits
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Bosonic I = 1
2 , S = 1, T1u channel

effective energies m̃eff(t) for levels 18 to 23
dashed lines show energies from single exponential fits
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Bosonic I = 1
2 , S = 1, T1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Scattering phase shifts in lattice QCD timeline

DeWitt 1956: finite-volume energies related to scattering phase
shifts
Lüscher 1984: quantum mechanics in a box
Rummukainen and Gottlieb 1995: nonzero total momenta
Kim, Sachrajda, and Sharpe 2005: field theoretic derivation
explosion of papers since then
generalized to arbitrary spin, multiple channels
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Scattering phase shifts from finite-volume energies

correlator of two-particle operator σ in finite volume

Bethe-Salpeter kernel

C∞(P) has branch cuts where two-particle thresholds begin
momentum quantization in finite volume: cuts→ series of poles
CL poles: two-particle energy spectrum of finite volume theory
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Phase shift from finite-volume energies (con’t)

finite-volume momentum sum is infinite-volume integral plus
correction F

define the following quantities: A, A′, invariant scattering
amplitude iM
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Phase shifts from finite-volume energies (con’t)

subtracted correlator Csub(P) = CL(P)− C∞(P) given by

sum geometric series
Csub(P) = A F(1− iMF)−1 A′.

poles of Csub(P) are poles of CL(P) from det(1− iMF) = 0
key tool: for gc(p) spatially contained and regular

1
L3

∑
p

gc(p) =

∫
d3k

(2π)3 gc(k) + O(e−mL)

1
L3

∑
p

gc(p2)

(p2 − a2)
=

1
L3

∑
p

gc(a2)

(p2 − a2)
+

∫
d3k

(2π)3

gc(p2)−g(a2)

(p2 − a2)
+O(e−mL)
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Phase shifts from finite-volume energies (con’t)

work in spatial L3 volume with periodic b.c.
total momentum P = (2π/L)d, where d vector of integers
masses m1 and m2 of particle 1 and 2
calculate lab-frame energy E of two-particle interacting state in
lattice QCD
boost to center-of-mass frame by defining:

Ecm =
√

E2 − P2, γ =
E

Ecm
,

q2
cm =

1
4

E2
cm −

1
2

(m2
1 + m2

2) +
(m2

1 − m2
2)2

4E2
cm

,

u2 =
L2q2

cm

(2π)2 , s =

(
1 +

(m2
1 − m2

2)

E2
cm

)
d

E related to S matrix (and phase shifts) by

det[1 + F(s,γ,u)(S− 1)] = 0,

where F matrix defined next slide
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Phase shifts from finite-volume energies (con’t)

F matrix in JLS basis states given by

F(s,γ,u)
J′mJ′L′S′a′; JmJLSa =

ρa

2
δa′aδS′S

{
δJ′JδmJ′mJδL′L

+W(s,γ,u)
L′mL′ ; LmL

〈J′mJ′ |L′mL′ , SmS〉〈LmL, SmS|JmJ〉
}
,

total angular mom J, J′, orbital mom L,L′, intrinsic spin S, S′

a, a′ channel labels
ρa = 1 distinguishable particles, ρa = 1

2 identical

W(s,γ,u)
L′mL′ ; LmL

=
2i

πγul+1Zlm(s, γ, u2)

∫
d2Ω Y∗L′mL′

(Ω)Y∗lm(Ω)YLmL (Ω)

Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Zlm

defined next slide
F(s,γ,u) diagonal in channel space, mixes different J, J′

recall S diagonal in angular momentum, but off-diagonal in
channel space
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RGL shifted zeta functions

compute Zlm using

Zlm(s, γ, u2) =
∑
n∈Z3

Ylm(z)
(z2 − u2)

e−Λ(z2−u2) + δl0
γπ√

Λ
F0(Λu2)

+
ilγ

Λl+1/2

∫ 1

0
dt
(π

t

)l+3/2
eΛtu2 ∑

n∈Z3
n6=0

eπin·sYlm(w) e−π
2w2/(tΛ)

where

z = n− γ−1[ 1
2 + (γ − 1)s−2n · s

]
s,

w = n− (1− γ)s−2s · ns, Ylm(x) = |x|l Ylm(x̂)

F0(x) = −1 +
1
2

∫ 1

0
dt

etx − 1
t3/2

choose Λ ≈ 1 for convergence of the summation
integral done Gauss-Legendre quadrature
F0(x) given in terms of Dawson or erf function
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Block diagonalization of F matrix

quantization condition is large determinant relation:

det[1 + F(s,γ,u)(S− 1)] = 0

define the matrix

B(R)
J′mJ′L′S′a′; JmJLSa = δJ′JδL′LδS′Sδa′aD(J)∗

mJ′mJ
(R)

can show that under lattice symmetry operator R,

F(Rs,γ,u) = B(R) F(s,γ,u) B(R)†

can block diagonalize F by diagonalizing D(J)
m′m(R) for each J

change of basis: little group irrep Λ, row λ, n occurrence of Λ in
D(J)

m′m(R)
|ΛλnJLSa〉 =

∑
mJ

cΛλn
JmJ
|JmJLSa〉

F diagonal in Λ, λ, but not in nΛ

can now focus on the matrix elements:

F(s,γ,u)(Λ,λ)
J′n′L′S′a′; JnLSa
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P-wave I = 1 ππ scattering

for P-wave phase shift δ1(Ecm) for ππ I = 1 scattering
define

wlm =
Zlm(s, γ, u2)

γπ3/2ul+1

d Λ cot δ1

(0,0,0) T+
1u Re w0,0

(0,0,1) A+
1 Re w0,0 + 2√

5
Re w2,0

E+ Re w0,0 − 1√
5
Re w2,0

(0,1,1) A+
1 Re w0,0 + 1

2
√

5
Re w2,0 −

√
6
5 Im w2,1 −

√
3

10 Re w2,2,

B+
1 Re w0,0 − 1√

5
Re w2,0 +

√
6
5 Re w2,2,

B+
2 Re w0,0 + 1

2
√

5
Re w2,0 +

√
6
5 Imw2,1 −

√
3

10 Re w2,2

(1,1,1) A+
1 Re w0,0 + 2

√
6
5 Im w2,2

E+ Re w0,0 −
√

6
5 Im w2,2
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Finite-volume ππ I = 1 energies

ππ-state energies for various d2
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I = 1 ππ scattering phase shift and width of the ρ

results 323×256, mπ≈240 MeV:
gρππ = 5.99(26), mρ/mπ = 3.350(24), χ2/dof = 1.04
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I = 1 ππ scattering phase shift and width of the ρ
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I = 1 ππ scattering phase shift and width of the ρ

compendium of results for gρππ
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Effective Hamiltonian method

relating finite-volume energies to resonance parameters via
“Lüscher method” very complicated
alternative: use an effective hadron Hamiltonian matrix

Wu et al, PRC 90, 055206 (2014)

use single and two-particle states as basis states
interaction terms from symmetry + assumed form wrt momenta
parameters of Hamiltonian determined from fits to finite-volume
spectra
Lippmann-Schwinger (or other methods) to extract
infinite-volume resonances
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Tetraquark operators

determine impact on spectrum when tetraquark operators
included
single-site and displaced quarks
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Conclusion

excited states are difficult!
crucial role of interpolating operators for excited-state studies in
lattice QCD
large number of finite-volume energies in large number of
channels now possible
stochastic LapH method works very well

allows evaluation of all needed quark-line diagrams

scattering phase shifts can be computed
infinite-volume resonance parameters from finite-volume
energies −→ need for simpler effective Hamiltonian/field theory
techniques
role of tetraquark operators to be studied
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