Lattice QCD Study of Excited Hadron Resonances

Colin Morningstar
Carnegie Mellon University

Effective Field Theories and Lattice Gauge Theory
TUM Institute for Advanced Study, Garching, Germany

May 21, 2016
spectroscopy resurgence due to discovery of unexpected charmonium \textit{XYZ} states

GlueX and JLab Hall D search for hybrids, other exotics

\begin{itemize}
 \item \textbf{Spectrum of QCD}
 \item \textbf{C. Morningstar}
 \item \textbf{Excited States}
\end{itemize}
Key Points

- crucial role of interpolating operators for excited-state studies in lattice QCD
- lower-lying multi-hadron levels must be dealt with
- need to handle many quark lines: stochastic LapH method

- level identification using interpolating operators
- finite-volume energies \(\Rightarrow \) hadron resonance properties: masses, decay widths

- focus: large \(32^3 \) anisotropic lattices, \(m_\pi \sim 240 \text{ MeV} \)
- scattering phase shifts from finite-volume energies
- need for effective Hamiltonian approach
- tetraquark operators
Excited states from correlation matrices

- in finite volume, energies are discrete (neglect wrap-around)
 \[C_{ij}(t) = \sum_n Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \quad Z_j^{(n)} = \langle 0 | O_j | n \rangle \]

- not practical to do fits using above form
- define new correlation matrix \(\widetilde{C}(t) \) using a single rotation
 \[\widetilde{C}(t) = U^\dagger C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U \]

 - columns of \(U \) are eigenvectors of \(C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2} \)

 - choose \(\tau_0 \) and \(\tau_D \) large enough so \(\widetilde{C}(t) \) diagonal for \(t > \tau_D \)

 - effective energies
 \[\tilde{m}_{\alpha}^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha\alpha}(t)}{\widetilde{C}_{\alpha\alpha}(t + \Delta t)} \right) \]

 tend to \(N \) lowest-lying stationary state energies in a channel

- 2-exponential fits to \(\widetilde{C}_{\alpha\alpha}(t) \) yield energies \(E_\alpha \) and overlaps \(Z_j^{(n)} \)
Correlator matrix toy model

- **Theorem:** For every $t \geq 0$, let $\lambda_n(t)$ be the eigenvalues of an $N \times N$ Hermitian correlation matrix $C(t)$ ordered such that $\lambda_0 \geq \lambda_1 \geq \cdots \geq \lambda_{N-1}$, then

$$\lim_{t \to \infty} \lambda_n(t) = b_n e^{-E_n t} \left[1 + O(e^{-t \Delta_n}) \right],$$

with $b_n > 0$, $\Delta_n = \min_{m \neq n} |E_n - E_m|$.

- **Example:** $N_e = 200$ eigenstates with energies

$$E_0 = 0.20, \quad E_n = E_{n-1} + \frac{0.08}{\sqrt{n}}, \quad n = 1, 2, \ldots, N_e - 1.$$

for $N \times N$ correlator matrix, $N = 12$, overlaps

$$Z_j^{(n)} = \frac{(-1)^{j+n}}{1 + 0.05(j - n)^2}.$$
Correlator matrix toy model (con’t)

- toy model $N_e = 200$ with 12×12 correlator matrix $C(t)$

- left: effective energies of diagonal elements of correlator matrix

- middle: effective energies of eigenvalues of $C(t)$

- right: effective energies of eigenvalues of $C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2}$ for $\tau_0 = 1$
Building blocks for single-hadron operators

- Building blocks: covariantly-displaced LapH-smeared quark fields
- Stout links $\tilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields
 \[
 \tilde{\psi}_{a\alpha}(x) = S_{ab}(x,y) \psi_{b\alpha}(y), \quad S = \Theta \left(\sigma_s^2 + \tilde{\Delta} \right)
 \]
- 3d gauge-covariant Laplacian $\tilde{\Delta}$ in terms of \tilde{U}
- Displaced quark fields:
 \[
 q_{Aa\alpha j} = D(j) \tilde{\psi}_{a\alpha}^{(A)}, \quad \bar{q}_{Aa\alpha j} = \bar{\tilde{\psi}}_{a\alpha}^{(A)} \gamma_4 D(j)^\dagger
 \]
- Displacement $D(j)$ is product of smeared links:
 \[
 D(j)(x,x') = \tilde{U}_{j_1}(x) \tilde{U}_{j_2}(x+d_2) \tilde{U}_{j_3}(x+d_3) \cdots \tilde{U}_{j_p}(x+d_p) \delta_{x', x+d_{p+1}}
 \]
- To good approximation, LapH smearing operator is
 \[
 S = V_s V_s^\dagger
 \]
- Columns of matrix V_s are eigenvectors of $\tilde{\Delta}$
Extended operators for single hadrons

- quark displacements build up orbital, radial structure

Meson configurations

\[\Phi_{AB}(p, t) = \sum_x e^{ip \cdot (x + \frac{1}{2} (d_{\alpha} + d_{\beta}))} \delta_{ab} \bar{q}_B^B(x, t) q_A^A(x, t) \]

\[\Phi_{ABC}(p, t) = \sum_x e^{ip \cdot x} \varepsilon_{abc} \bar{q}_C^C(x, t) \bar{q}_B^B(x, t) \bar{q}_A^A(x, t) \]

- group-theory projections onto irreps of lattice symmetry group

\[\overline{M}_l(t) = c_{\alpha\beta}^{(l)*} \Phi_{\alpha\beta}(t) \quad \quad \overline{B}_l(t) = c_{\alpha\beta\gamma}^{(l)*} \Phi_{\alpha\beta\gamma}(t) \]

- definite momentum \(p \), irreps of little group of \(p \)
Importance of smeared fields

- effective masses of 3 selected nucleon operators shown
- noise reduction of displaced-operators from link smearing $n_{\rho\rho} = 2.5, n_\rho = 16$
- quark-field smearing $\sigma_s = 4.0, n_\sigma = 32$
 reduces excited-state contamination
Two-hadron operators

- Our approach: superposition of products of single-hadron operators of definite momenta

\[
C^{I_3aI_3b}_{p_a\lambda_a; p_b\lambda_b} B^{I_3aS_a}_{p_a\Lambda_a\lambda_a i_a} B^{I_3bS_b}_{p_b\Lambda_b\lambda_b i_b}
\]

- Fixed total momentum \(p = p_a + p_b \), fixed \(\Lambda_a, i_a, \Lambda_b, i_b \)

- Group-theory projections onto little group of \(p \) and isospin irreps

- Crucial to know and fix all phases of single-hadron operators for all momenta
 - Each class, choose reference direction \(p_{\text{ref}} \)
 - Each \(p \), select one reference rotation \(R^p_{\text{ref}} \) that transforms \(p_{\text{ref}} \) into \(p \)

- Efficient creating large numbers of two-hadron operators

- Generalizes to three, four, ... hadron operators
temporal correlations involving our two-hadron operators need
- slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
- sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!
Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix $K[U]$
- introduce Z_4 noise vectors η in the LapH subspace

$$\eta_{\alpha k}(t), \quad t = \text{time}, \ \alpha = \text{spin}, \ k = \text{eigenvector number}$$

- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K^{-1}_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors $P^{(a)}$, then define

$$\eta^{[a]} = P^{(a)} \eta, \quad X^{[a]} = K^{-1} \eta^{[a]}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K^{-1}_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a X_i^{(r)[a]} \eta_j^{(r)[a]*}$$
The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to $Kx = y$
Correlators and quark line diagrams

- **baryon correlator**

\[
C_{\bar{l}l} \approx \frac{1}{N_R} \sum_r \sum_{dAdbdc} B_l^{(r)[dAdbdc]} (\varphi^A, \varphi^B, \varphi^C) B_{\bar{l}}^{(r)[dAdbdc]} (\bar{\varrho}^A, \bar{\varrho}^B, \bar{\varrho}^C)^*
\]

- express diagrammatically

- **meson correlator**

\[
- \begin{array}{c}
\begin{array}{c}
\bar{\varphi} \\
& \mathcal{Q} \\
& \mathcal{Q} \\
\mathcal{Q} \\
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\mathcal{Q} \\
& \bar{\varphi} \\
& \mathcal{Q} \\
\mathcal{Q} \\
\end{array}
\end{array}
\]

C. Morningstar Excited States 13
More complicated correlators

- two-meson to two-meson correlators (non isoscalar mesons)
Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h
 $A_{1a}, A_{2g}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, \quad a = g, u$
 - on-axis momenta: little group C_{4v}
 $A_1, A_2, B_1, B_2, E, \quad G_1, G_2$
 - planar-diagonal momenta: little group C_{2v}
 $A_1, A_2, B_1, B_2, \quad G_1, G_2$
 - cubic-diagonal momenta: little group C_{3v}
 $A_1, A_2, E, \quad F_1, F_2, G$

- include G parity in some meson sectors (superscript $+$ or $-$)
Spin content of cubic box irreps

- numbers of occurrences of Λ irreps in J subduced

<table>
<thead>
<tr>
<th>J</th>
<th>A_1</th>
<th>A_2</th>
<th>E</th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>G_1</th>
<th>G_2</th>
<th>H</th>
<th>J</th>
<th>G_1</th>
<th>G_2</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\frac{9}{2}$</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$\frac{11}{2}$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{5}{2}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$\frac{13}{2}$</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{7}{2}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{15}{2}$</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Ensembles and run parameters

- focusing on two Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 4.4$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_\pi \approx 390$ MeV, $m_\pi L \sim 5.7$

- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so $SU(2)$ isospin exact
- generated using RHMC, configs separated by 20 trajectories

- stout-link smearing in operators $\xi = 0.10$ and $n_\xi = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_v = 112$ for 24^3 lattices
 - $N_v = 264$ for 32^3 lattices

- source times:
 - 4 widely-separated t_0 values on 24^3
 - 8 t_0 values used on 32^3 lattice
$I = 1, \ S = 0, \ T_{1u}^+$ channel

- effective energies $\tilde{m}_{\text{eff}}(t)$ for levels 0 to 24 ($32^3|240$)
- energies obtained from two-exponential fits (B. Fahy, PhD thesis)
effective energies $\tilde{m}^{\text{eff}}(t)$ for levels 25 to 49
energies obtained from two-exponential fits
Level identification

- overlaps for various operators

C. Morningstar

Excited States
Staircase of energy levels

- stationary state energies $I = 1$, $S = 0$, T_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice

![Graph showing levels and mixing]

- m/m_K: Levels

Legend:
- Blue: single-hadron dominated
- Cyan: two-hadron dominated
- Green: significant mixing

C. Morningstar
Excited States
Summary and comparison with experiment

- right: energies of $\bar{q}q$-dominant states as ratios over m_K for $(32^3|240)$ ensemble
- left: experiment (masses and widths)

![Graph showing comparison between experiment and lattice results for excited states.](graph.png)
Issues

- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - use of hadron effective Hamiltonian techniques
- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
Bosonic $I = 1, S = 0, A_{1u}^-$ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Bosonic $I = 1$, $S = 0$, E^{+}_{u} channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Bosonic $I = 1$, $S = 0$, T_{1g}^- channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators

T1gm 1
Bosonic $I = 1, \ S = 0, \ T_{1u}^-$ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators
Bosonic $I = \frac{1}{2}, \quad S = 1, \quad T_{1u}$ channel

- kaon channel: effective energies $\tilde{m}^{\text{eff}}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits (Y.C. Jhang, PhD thesis)
Bosonic $I = \frac{1}{2}, \ S = 1, \ T_{1u}$ channel

- effective energies $\tilde{m}^{\text{eff}}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits
Bosonic $I = \frac{1}{2}$, $S = 1$, T_{1u} channel

- effective energies $\tilde{m}^{\text{eff}}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits
Bosonic $I = \frac{1}{2}, \ S = 1, \ T_{1u}$ channel

- finite-volume stationary-state energies: “staircase” plot
- $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max overlaps with SH optimized operators

kaon T1u 32
Scattering phase shifts in lattice QCD timeline

- DeWitt 1956: finite-volume energies related to scattering phase shifts
- Lüscher 1984: quantum mechanics in a box
- Rummukainen and Gottlieb 1995: nonzero total momenta
- Kim, Sachrajda, and Sharpe 2005: field theoretic derivation
- explosion of papers since then
- generalized to arbitrary spin, multiple channels
Scattering phase shifts from finite-volume energies

- Correlator of two-particle operator σ in finite volume

$$C^L(P) = \sigma \sigma^\dagger + \sigma iK \sigma^\dagger$$

+ $$\sigma iK iK \sigma^\dagger + \ldots$$

- Bethe-Salpeter kernel

$$iK = \times + \bigcirc + \bigcirc \bigcirc$$

+ $$\bigcirc + \bigcirc$$

- $C^\infty(P)$ has branch cuts where two-particle thresholds begin
- Momentum quantization in finite volume: cuts \rightarrow series of poles
- C^L poles: two-particle energy spectrum of finite volume theory
Phase shift from finite-volume energies (con’t)

- finite-volume momentum sum is infinite-volume integral plus correction \mathcal{F}

- define the following quantities: A, A', invariant scattering amplitude $i\mathcal{M}$

\[
\begin{align*}
 A &= \sigma + \sigma iK \\
 &\quad + \sigma iK iK + \ldots \\
 A' &= \sigma^\dagger + iK \sigma^\dagger \\
 &\quad + iK iK \sigma^\dagger + \ldots \\
 i\mathcal{M} &= iK + iK iK + \ldots \\
 &\quad + iK iK iK + \ldots
\end{align*}
\]
Phase shifts from finite-volume energies (con’t)

- subtracted correlator \(C_{\text{sub}}(P) = C^L(P) - C^\infty(P) \) given by

\[
C_{\text{sub}}(P) = A \left(A' \right) + A \left(iM \right) A' + \ldots
\]

- sum geometric series

\[
C_{\text{sub}}(P) = A \mathcal{F} (1 - iM\mathcal{F})^{-1} A'.
\]

- poles of \(C_{\text{sub}}(P) \) are poles of \(C^L(P) \) from \(\det(1 - iM\mathcal{F}) = 0 \)

- key tool: for \(g_c(p) \) spatially contained and regular

\[
\frac{1}{L^3} \sum_p g_c(p) = \int \frac{d^3k}{(2\pi)^3} g_c(k) + O(e^{-mL})
\]

\[
\frac{1}{L^3} \sum_p \frac{g_c(p^2)}{(p^2 - a^2)} = \frac{1}{L^3} \sum_p \frac{g_c(a^2)}{(p^2 - a^2)} + \int \frac{d^3k}{(2\pi)^3} \frac{g_c(p^2) - g(a^2)}{(p^2 - a^2)} + O(e^{-mL})
\]
Phase shifts from finite-volume energies (con’t)

- work in spatial L^3 volume with periodic b.c.
- total momentum $\mathbf{P} = (2\pi/L)\mathbf{d}$, where \mathbf{d} vector of integers
- masses m_1 and m_2 of particle 1 and 2
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$E_{\text{cm}} = \sqrt{E^2 - \mathbf{P}^2}, \quad \gamma = \frac{E}{E_{\text{cm}}},$$

$$q_{\text{cm}}^2 = \frac{1}{4}E_{\text{cm}}^2 - \frac{1}{2}(m_1^2 + m_2^2) + \frac{(m_1^2 - m_2^2)^2}{4E_{\text{cm}}^2},$$

$$u^2 = \frac{L^2 q_{\text{cm}}^2}{(2\pi)^2}, \quad s = \left(1 + \frac{(m_1^2 - m_2^2)}{E_{\text{cm}}^2}\right)d$$

- E related to S matrix (and phase shifts) by

$$\det[1 + F(s,\gamma,u)(S - 1)] = 0,$$

where F matrix defined next slide
Phase shifts from finite-volume energies (con’t)

- F matrix in JLS basis states given by

$$F_{J'm_j,L'S'a'}^{(s,\gamma,u)}; Jm_jLSa = \frac{\rho_a}{2} \delta_{a'a} \delta_{S'S} \left\{ \delta_{J'J} \delta_{m_j,m_j} \delta_{L'L}
ight\}$$

$$+ W_{L'm_{L'}}; Lm_L \langle J'm_J|L'm_{L'}, Sm_S \rangle \langle Lm_L, Sm_S | Jm_J \rangle \right\},$$

- total angular mom J, J', orbital mom L, L', intrinsic spin S, S'
- a, a' channel labels
- $\rho_a = 1$ distinguishable particles, $\rho_a = \frac{1}{2}$ identical

$$W_{L'm_{L'}; Lm_L}^{(s,\gamma,u)} = \frac{2i}{\pi^2 u^{l+1}} \mathcal{Z}_{lm}(s, \gamma, u^2) \int d^2\Omega \ Y_{L'm_{L'}}^\ast(\Omega) Y_{lm}(\Omega) Y_{Lm_L}(\Omega)$$

- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions \mathcal{Z}_{lm} defined next slide
- $F^{(s,\gamma,u)}$ diagonal in channel space, mixes different J, J'
- recall S diagonal in angular momentum, but off-diagonal in channel space
compute Z_{lm} using

$$Z_{lm}(s, \gamma, u^2) = \sum_{n \in \mathbb{Z}^3} \frac{\mathcal{Y}_{lm}(z)}{(z^2 - u^2)} e^{-\Lambda(z^2 - u^2)} + \delta_{l0} \frac{\gamma \pi}{\sqrt{\Lambda}} F_0(\Lambda u^2)$$

$$+ \frac{i^l \gamma}{\Lambda^{l+1/2}} \int_0^1 dt \left(\frac{\pi}{t} \right)^{l+3/2} e^{\Lambda tu^2} \sum_{n \in \mathbb{Z}^3 \atop n \neq 0} e^{\pi in \cdot s} \mathcal{Y}_{lm}(w) e^{-\pi^2 w^2 / (t \Lambda)}$$

where

$$z = n - \gamma^{-1} \left[\frac{1}{2} + (\gamma - 1)s^{-2} n \cdot s \right] s,$$

$$w = n - (1 - \gamma)s^{-2} s \cdot ns,$$

$$\mathcal{Y}_{lm}(x) = |x|^l Y_{lm}(\hat{x})$$

$$F_0(x) = -1 + \frac{1}{2} \int_0^1 dt \frac{e^{tx} - 1}{t^{3/2}}$$

choose $\Lambda \approx 1$ for convergence of the summation

integral done Gauss-Legendre quadrature

$F_0(x)$ given in terms of Dawson or erf function
Block diagonalization of F matrix

- quantization condition is large determinant relation:
 \[
 \det[1 + F^{(s,\gamma,u)}(S - 1)] = 0
 \]
- define the matrix
 \[
 B_{J'm',L'S'a'}^{(R)}; \ Jm_jLSa = \delta_{J'J} \delta_{L'L} \delta_{S'S} \delta_{a'a} D_{m'm_j}^{(J)}(R)
 \]
- can show that under lattice symmetry operator R,
 \[
 F^{(Rs,\gamma,u)} = B^{(R)} F^{(s,\gamma,u)} B^{(R)^\dagger}
 \]
- can block diagonalize F by diagonalizing $D_{m'm_j}^{(J)}(R)$ for each J
- change of basis: little group irrep Λ, row λ, n occurrence of Λ in $D_{m'm_j}^{(J)}(R)$
 \[
 |\Lambda\lambda nJLSa\rangle = \sum_m c_{Jm_j}^{\Lambda\lambda n} |Jm_jLSa\rangle
 \]
- F diagonal in Λ, λ, but not in $n_{\Lambda m_j}$
- can now focus on the matrix elements:
 \[
 F^{(s,\gamma,u)}(\Lambda,\lambda)_{J'n'L'S'a'; JnLSa}
 \]
for \(P\)-wave phase shift \(\delta_1(E_{\text{cm}})\) for \(\pi\pi\ I = 1\) scattering

define

\[
w_{lm} = \frac{Z_{lm}(s, \gamma, u^2)}{\gamma \pi^{3/2} u^{l+1}}
\]

<table>
<thead>
<tr>
<th>(d)</th>
<th>(\Lambda)</th>
<th>(\cot \delta_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(T_{1\mu}^+)</td>
<td>(\text{Re } w_{0,0})</td>
</tr>
<tr>
<td>(0,0,1)</td>
<td>(A_1^+)</td>
<td>(\text{Re } w_{0,0} + \frac{2}{\sqrt{5}} \text{Re } w_{2,0})</td>
</tr>
<tr>
<td></td>
<td>(E^+)</td>
<td>(\text{Re } w_{0,0} - \frac{1}{\sqrt{5}} \text{Re } w_{2,0})</td>
</tr>
<tr>
<td>(0,1,1)</td>
<td>(A_1^+)</td>
<td>(\text{Re } w_{0,0} + \frac{1}{2\sqrt{5}} \text{Re } w_{2,0} - \sqrt{\frac{6}{5}} \text{Im } w_{2,1} - \sqrt{\frac{3}{10}} \text{Re } w_{2,2})</td>
</tr>
<tr>
<td></td>
<td>(B_1^+)</td>
<td>(\text{Re } w_{0,0} - \frac{1}{\sqrt{5}} \text{Re } w_{2,0} + \sqrt{\frac{6}{5}} \text{Re } w_{2,2})</td>
</tr>
<tr>
<td></td>
<td>(B_2^+)</td>
<td>(\text{Re } w_{0,0} + \frac{1}{2\sqrt{5}} \text{Re } w_{2,0} + \sqrt{\frac{6}{5}} \text{Im } w_{2,1} - \sqrt{\frac{3}{10}} \text{Re } w_{2,2})</td>
</tr>
<tr>
<td>(1,1,1)</td>
<td>(A_1^+)</td>
<td>(\text{Re } w_{0,0} + 2 \sqrt{\frac{6}{5}} \text{Im } w_{2,2})</td>
</tr>
<tr>
<td></td>
<td>(E^+)</td>
<td>(\text{Re } w_{0,0} - \sqrt{\frac{6}{5}} \text{Im } w_{2,2})</td>
</tr>
</tbody>
</table>
Finite-volume $\pi\pi$ $I = 1$ energies

- $\pi\pi$-state energies for various d^2

\[
E_{+1u} = 0, \ T_{2d+1} = 1, \ A_{2d+1} = 1, \ E_{2d+1} = 2, \ A_{2d+1} = 2, \ B_{2d+2} = 2, \ B_{2d+2} = 2, \ ...
\]
$I = 1\ \pi\pi$ scattering phase shift and width of the ρ

- results $32^3 \times 256$, $m_\pi \approx 240$ MeV:
 - $g_{\rho\pi\pi} = 5.99(26)$, $m_\rho/m_\pi = 3.350(24)$, χ^2/dof = 1.04

- fit
 - $g_{\rho\pi\pi}^2 q_{cm}^3 \cot(\delta_1) = 6\pi E_{cm}(m_\rho^2 - E_{cm}^2)$
$I = 1 \pi \pi$ scattering phase shift and width of the ρ

C. Morningstar

Excited States
$I = 1 \, \pi\pi$ scattering phase shift and width of the ρ

- compendium of results for $g_{\rho\pi\pi}$

![Graph showing m_ρ/m_π and $g_{\rho\pi\pi}$ as functions of m_π^2 and m_π.]
Effective Hamiltonian method

- relating finite-volume energies to resonance parameters via “Lüscher method” very complicated
- alternative: use an effective hadron Hamiltonian matrix
 - Wu et al, PRC 90, 055206 (2014)
- use single and two-particle states as basis states
- interaction terms from symmetry + assumed form wrt momenta
- parameters of Hamiltonian determined from fits to finite-volume spectra
- Lippmann-Schwinger (or other methods) to extract infinite-volume resonances
Tetraquark operators

- determine impact on spectrum when tetraquark operators included
- single-site and displaced quarks

J. Bulava et al., *$I = 1$ and $I = 2$ $\pi\pi$ scattering phase shifts from $N_f = 2 + 1$ lattice QCD*, submitted to Nucl. Phys. B. (2016).
Conclusions

- Excited states are difficult!
- Crucial role of interpolating operators for excited-state studies in lattice QCD
- Large number of finite-volume energies in large number of channels now possible
- Stochastic LapH method works very well
 - Allows evaluation of all needed quark-line diagrams
- Scattering phase shifts can be computed
- Infinite-volume resonance parameters from finite-volume energies → Need for simpler effective Hamiltonian/field theory techniques
- Role of tetraquark operators to be studied