Lattice QCD Study of Excited Hadron Resonances

Colin Morningstar Carnegie Mellon University

Effective Field Theories and Lattice Gauge Theory TUM Insitute for Advanced Study, Garching, Germany

May 21, 2016

Spectrum of QCD

- spectroscopy resurgence due to discovery of unexpected charmonium XYZ states
- GlueX and JLab Hall D search for hybrids, other exotics

C. Morningstar

Key Points

- crucial role of interpolating operators for excited-state studies in lattice QCD
- lower-lying multi-hadron levels must be dealt with
- need to handle many quark lines: stochastic LapH method
- level identification using interpolating operators
- finite-volume energies ⇒ hadron resonance properties: masses, decay widths

- focus: large 32^3 anisotropic lattices, $m_{\pi} \sim 240$ MeV
- scattering phase shifts from finite-volume energies
- need for effective Hamiltonian approach
- tetraquark operators

C. Morningstar

Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

$$C_{ij}(t) = \sum_{n} Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \qquad Z_j^{(n)} = \langle 0 | O_j | n \rangle$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation $\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$
- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose τ_0 and τ_D large enough so $\widetilde{C}(t)$ diagonal for $t > \tau_D$

• effective energies

$$\widetilde{m}_{\alpha}^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha\alpha}(t)}{\widetilde{C}_{\alpha\alpha}(t + \Delta t)} \right)$$

tend to N lowest-lying stationary state energies in a channel

• 2-exponential fits to $\widetilde{C}_{\alpha\alpha}(t)$ yield energies E_{α} and overlaps $Z_{i}^{(n)}$

Correlator matrix toy model

• **Theorem:** For every $t \ge 0$, let $\lambda_n(t)$ be the eigenvalues of an $N \times N$ Hermitian correlation matrix C(t) ordered such that $\lambda_0 \ge \lambda_1 \ge \cdots \ge \lambda_{N-1}$, then

$$\lim_{t \to \infty} \lambda_n(t) = b_n e^{-E_n t} \Big[1 + O(e^{-t\Delta_n}) \Big],$$

$$b_n > 0, \quad \Delta_n = \min_{m \neq n} |E_n - E_m|.$$

• Example: $N_e = 200$ eigenstates with energies

$$E_0 = 0.20,$$
 $E_n = E_{n-1} + \frac{0.08}{\sqrt{n}},$ $n = 1, 2, \dots, N_e - 1.$

for $N \times N$ correlator matrix, N = 12, overlaps

$$Z_j^{(n)} = \frac{(-1)^{j+n}}{1+0.05(j-n)^2}.$$

C. Morningstar

Correlator matrix toy model (con't)

• toy model $N_e = 200$ with 12×12 correlator matrix C(t)

- left: effective energies of diagonal elements of correlator matrix
- middle: effective energies of eigenvalues of C(t)
- right: effective energies of eigenvalues of $C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2}$ for $\tau_0 = 1$

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

 $\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \ \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q^A_{a\alpha j} = D^{(j)} \widetilde{\psi}^{(A)}_{a\alpha}, \qquad \overline{q}^A_{a\alpha j} = \overline{\widetilde{\psi}}^{(A)}_{a\alpha} \gamma_4 D^{(j)}$$

• displacement D^(j) is product of smeared links:

 $D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x', \ x+d_{p+1}}$

to good approximation, LapH smearing operator is

 $S = V_s V_s^{\dagger}$

• columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

• quark displacements build up orbital, radial structure

C. Morningstar

Importance of smeared fields

- effective masses of 3 selected nucleon operators shown
- noise reduction of displaced-operators from link smearing $n_{\rho}\rho = 2.5, n_{\rho} = 16$
- quark-field smearing $\sigma_s = 4.0, n_{\sigma} = 32$ reduces excited-state contamination

Two-hadron operators

 our approach: superposition of products of single-hadron operators of definite momenta

 $c_{p_a\lambda_a; p_b\lambda_b}^{I_3I_{3a}S_a} B_{p_a\Lambda_a\lambda_ai_a}^{I_bI_{3b}S_b} B_{p_b\Lambda_b\lambda_bi_b}^{I_aI_{3a}S_a}$

- fixed total momentum $\boldsymbol{p} = \boldsymbol{p}_a + \boldsymbol{p}_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction $p_{\rm ref}$
 - each p, select one reference rotation R_{ref}^{p} that transforms p_{ref} into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix K[U]
- introduce Z_4 noise vectors η in the LapH subspace

 $\eta_{\alpha k}(t), \quad t = time, \ \alpha = spin, \ k = eigenvector number$

• solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors $P^{(a)}$, then define

 $\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]}$

to obtain Monte Carlo estimate with drastically reduced variance

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

C. Morningstar

The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to Kx = y

Correlators and quark line diagrams

• baryon correlator

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

express diagrammatically

meson correlator

C. Morningstar

More complicated correlators

• two-meson to two-meson correlators (non isoscalar mesons)

C. Morningstar

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group O_h

 $A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, a = g, u$

• on-axis momenta: little group $C_{4\nu}$

 $A_1, A_2, B_1, B_2, E, \quad G_1, G_2$

• planar-diagonal momenta: little group $C_{2\nu}$

 $A_1,A_2,B_1,B_2,\quad G_1,G_2$

cubic-diagonal momenta: little group C_{3ν}

 $A_1, A_2, E, \quad F_1, F_2, G$

• include G parity in some meson sectors (superscript + or -)

Spin content of cubic box irreps

• numbers of occurrences of Λ irreps in J subduced

		J	A_1	A_2	E	T_1	T_2		
	_	0	1	0	0	0	0	_	
		1	0	0	0	1	0		
		2	0	0	1	0	1		
		3	0	1	0	1	1		
		4	1	0	1	1	1		
		5	0	0	1	2	1		
		6	1	1	1	1	2		
		7	0	1	1	2	2		
J	G_1	0	G_2	Η		J	G_1	G_2	H
$\frac{1}{2}$	1		0	0		$\frac{9}{2}$	1	0	2
$\frac{3}{2}$	0		0	1		$\frac{11}{2}$	1	1	2
$\frac{5}{2}$	0		1	1		$\frac{13}{2}$	1	2	2
$\frac{7}{2}$	1		1	1		$\frac{15}{2}$	1	1	3

C. Morningstar

Ensembles and run parameters

- focusing on two Monte Carlo ensembles
 - (32³|240): 412 configs 32³ × 256, $m_{\pi} \approx 240$ MeV, $m_{\pi}L \sim 4.4$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_\pi \approx 390$ MeV, $m_\pi L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_v = 112$ for 24^3 lattices
 - $N_v = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated to values on 24³
 - 8 t₀ values used on 32³ lattice

C. Morningstar

$I = 1, S = 0, T_{1u}^+$ channel

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 0 to 24 (32³|240)
- energies obtained from two-exponential fits (B. Fahy, PhD thesis)

C. Morningstar

$I = 1, S = 0, T_{1u}^+$ energy extraction, continued

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 25 to 49
- energies obtained from two-exponential fits

C. Morningstar

Level identification

overlaps for various operators

Staircase of energy levels

• stationary state energies I = 1, S = 0, T_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice

Summary and comparison with experiment

- right: energies of $\overline{q}q$ -dominant states as ratios over m_K for $(32^3|240)$ ensemble
- left: experiment (masses and widths)

C. Morningstar

Issues

- infinite-volume resonance parameters from finite-volume energies
 - · Luscher method too cumbersome, restrictive in applicability
 - use of hadron effective Hamiltonian techniques
- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression

Bosonic $I = 1, S = 0, A_{1u}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

A1um 1

C. Morningstar

Bosonic $I = 1, S = 0, E_u^+$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

Eup 1

C. Morningstar

Bosonic $I = 1, S = 0, T_{1g}^{-}$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

T1gm 1

C. Morningstar

Bosonic $I = 1, S = 0, T_{1u}^{-}$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

T1um 1

C. Morningstar

- kaon channel: effective energies $\tilde{m}^{\text{eff}}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits (Y.C. Jhang, PhD thesis)

C. Morningstar

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits

C. Morningstar

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits

C. Morningstar

Excited States

30

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

kaon T1u 32

C. Morningstar

Scattering phase shifts in lattice QCD timeline

- DeWitt 1956: finite-volume energies related to scattering phase shifts
- Lüscher 1984: quantum mechanics in a box
- Rummukainen and Gottlieb 1995: nonzero total momenta
- Kim, Sachrajda, and Sharpe 2005: field theoretic derivation
- explosion of papers since then
- generalized to arbitrary spin, multiple channels

Scattering phase shifts from finite-volume energies

• correlator of two-particle operator σ in finite volume

• $C^{\infty}(P)$ has branch cuts where two-particle thresholds begin

- momentum quantization in finite volume: cuts \rightarrow series of poles
- *C^L* poles: two-particle energy spectrum of finite volume theory

Phase shift from finite-volume energies (con't)

 finite-volume momentum sum is infinite-volume integral plus correction *F*

 define the following quantities: A, A', invariant scattering amplitude iM

Phase shifts from finite-volume energies (con't)

• subtracted correlator $C_{sub}(P) = C^{L}(P) - C^{\infty}(P)$ given by

sum geometric series

$$C_{\rm sub}(P) = A \ \mathcal{F}(1 - i\mathcal{M}\mathcal{F})^{-1} A'.$$

- poles of $C_{\text{sub}}(P)$ are poles of $C^{L}(P)$ from $\det(1 i\mathcal{MF}) = 0$
- key tool: for $g_c(\mathbf{p})$ spatially contained and regular

$$\frac{1}{L^3} \sum_{p} g_c(p) = \int \frac{d^3k}{(2\pi)^3} g_c(\mathbf{k}) + O(e^{-mL})$$

$$\frac{1}{L^3} \sum_{\mathbf{p}} \frac{g_c(\mathbf{p}^2)}{(\mathbf{p}^2 - a^2)} = \frac{1}{L^3} \sum_{\mathbf{p}} \frac{g_c(a^2)}{(\mathbf{p}^2 - a^2)} + \int \frac{d^3k}{(2\pi)^3} \frac{g_c(\mathbf{p}^2) - g(a^2)}{(\mathbf{p}^2 - a^2)} + O(e^{-mL})$$

C. Morningstar

Phase shifts from finite-volume energies (con't)

- work in spatial *L*³ volume with periodic b.c.
- total momentum $P = (2\pi/L)d$, where d vector of integers
- masses m_1 and m_2 of particle 1 and 2
- calculate lab-frame energy *E* of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$\begin{split} E_{\rm cm} &= \sqrt{E^2 - \boldsymbol{P}^2}, \qquad \gamma = \frac{E}{E_{\rm cm}}, \\ \boldsymbol{q}_{\rm cm}^2 &= \frac{1}{4} E_{\rm cm}^2 - \frac{1}{2} (m_1^2 + m_2^2) + \frac{(m_1^2 - m_2^2)^2}{4E_{\rm cm}^2}, \\ u^2 &= \frac{L^2 \boldsymbol{q}_{\rm cm}^2}{(2\pi)^2}, \qquad \boldsymbol{s} = \left(1 + \frac{(m_1^2 - m_2^2)}{E_{\rm cm}^2}\right) \boldsymbol{d} \end{split}$$

• E related to S matrix (and phase shifts) by

$$\det[1 + F^{(s,\gamma,u)}(S-1)] = 0,$$

where F matrix defined next slide

C. Morningstar

Phase shifts from finite-volume energies (con't)

F matrix in JLS basis states given by

$$F_{J'm_{J'}L'S'a'; Jm_{J}LSa}^{(s,\gamma,u)} = \frac{\rho_a}{2} \delta_{a'a} \delta_{S'S} \bigg\{ \delta_{J'J} \delta_{m_{J'}m_{J}} \delta_{L'L}$$

 $+ W_{L'm_{L'}; Lm_{L}}^{(s,\gamma,u)} \langle J'm_{J'} | L'm_{L'}, Sm_{S} \rangle \langle Lm_{L}, Sm_{S} | Jm_{J} \rangle \bigg\},$ • total angular mom J, J', orbital mom L, L', intrinsic spin S, S'

- a, a' channel labels
- $\rho_a = 1$ distinguishable particles, $\rho_a = \frac{1}{2}$ identical

$$W_{L'm_{L'}; Lm_{L}}^{(s,\gamma,u)} = \frac{2i}{\pi\gamma u^{l+1}} \mathcal{Z}_{lm}(s,\gamma,u^{2}) \int d^{2}\Omega Y_{L'm_{L'}}^{*}(\Omega) Y_{lm}(\Omega) Y_{Lm_{L}}(\Omega)$$

- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Z_{lm} defined next slide
- $F^{(s,\gamma,u)}$ diagonal in channel space, mixes different J, J'
- recall S diagonal in angular momentum, but off-diagonal in channel space

C. Morningstar

RGL shifted zeta functions

• compute Z_{lm} using

$$\begin{aligned} \mathcal{Z}_{lm}(\boldsymbol{s},\gamma,\boldsymbol{u}^2) &= \sum_{\boldsymbol{n}\in\mathbb{Z}^3} \frac{\mathcal{Y}_{lm}(\boldsymbol{z})}{(\boldsymbol{z}^2-\boldsymbol{u}^2)} e^{-\Lambda(\boldsymbol{z}^2-\boldsymbol{u}^2)} + \delta_{l0} \frac{\gamma\pi}{\sqrt{\Lambda}} F_0(\Lambda\boldsymbol{u}^2) \\ &+ \frac{i^l\gamma}{\Lambda^{l+1/2}} \int_0^1 dt \left(\frac{\pi}{t}\right)^{l+3/2} e^{\Lambda t\boldsymbol{u}^2} \sum_{\boldsymbol{n}\in\mathbb{Z}^3\atop\boldsymbol{n}\neq0} e^{\pi\boldsymbol{i}\boldsymbol{n}\cdot\boldsymbol{s}} \mathcal{Y}_{lm}(\boldsymbol{w}) \ e^{-\pi^2 \boldsymbol{w}^2/(t\Lambda)} \end{aligned}$$

where

$$z = \mathbf{n} - \gamma^{-1} \begin{bmatrix} \frac{1}{2} + (\gamma - 1)s^{-2}\mathbf{n} \cdot \mathbf{s} \end{bmatrix} \mathbf{s},$$

$$\mathbf{w} = \mathbf{n} - (1 - \gamma)s^{-2}\mathbf{s} \cdot \mathbf{n}\mathbf{s}, \qquad \mathcal{Y}_{lm}(\mathbf{x}) = |\mathbf{x}|^l Y_{lm}(\widehat{\mathbf{x}})$$

$$F_0(x) = -1 + \frac{1}{2} \int_0^1 dt \; \frac{e^{tx} - 1}{t^{3/2}}$$

- choose $\Lambda \approx 1$ for convergence of the summation
- integral done Gauss-Legendre quadrature
- $F_0(x)$ given in terms of Dawson or erf function

Block diagonalization of F matrix

• quantization condition is large determinant relation:

 $\det[1 + F^{(s,\gamma,u)}(S-1)] = 0$

define the matrix

 $B_{J'm_{J'}L'S'a'; Jm_JLSa}^{(R)} = \delta_{J'J}\delta_{L'L}\delta_{S'S}\delta_{a'a}D_{m_{J'}m_{J}}^{(J)*}(R)$

can show that under lattice symmetry operator R,

 $F^{(Rs,\gamma,u)} = B^{(R)} F^{(s,\gamma,u)} B^{(R)\dagger}$

- can block diagonalize F by diagonalizing $D_{m'm}^{(J)}(R)$ for each J
- change of basis: little group irrep Λ , row λ , *n* occurrence of Λ in $D_{m'm}^{(J)}(R)$ $|\Lambda\lambda nJLSa\rangle = \sum c_{Jm_J}^{\Lambda\lambda n} |Jm_JLSa\rangle$
- *F* diagonal in Λ , λ , but not in $n_{\Lambda}^{m_{J}}$
- can now focus on the matrix elements:

 $F_{J'n'L'S'a'; JnLSa}^{(s,\gamma,u)(\Lambda,\lambda)}$

C. Morningstar

P-wave $I = 1 \pi \pi$ scattering

- for *P*-wave phase shift $\delta_1(E_{\rm cm})$ for $\pi\pi I = 1$ scattering
- define $w_{lm} = rac{\mathcal{Z}_{lm}(s,\gamma,u^2)}{\gamma \pi^{3/2} u^{l+1}}$

C. Morningstar

Excited States

40

Finite-volume $\pi\pi I = 1$ energies

• $\pi\pi$ -state energies for various d^2

$I = 1 \ \pi \pi$ scattering phase shift and width of the ρ

• results $32^3 \times 256$, $m_\pi \approx 240$ MeV: $g_{\rho\pi\pi} = 5.99(26), \ m_\rho/m_\pi = 3.350(24), \ \chi^2/dof = 1.04$

• fit $g_{\rho\pi\pi}^2 q_{\rm cm}^3 \cot(\delta_1) = 6\pi E_{\rm cm} (m_{\rho}^2 - E_{\rm cm}^2)$

C. Morningstar

$I = 1 \ \pi \pi$ scattering phase shift and width of the ρ

C. Morningstar

Excited States

43

$I = 1 \ \pi \pi$ scattering phase shift and width of the ρ

• compendium of results for $g_{\rho\pi\pi}$

Effective Hamiltonian method

- relating finite-volume energies to resonance parameters via "Lüscher method" very complicated
- alternative: use an effective hadron Hamiltonian matrix
 - Wu et al, PRC 90, 055206 (2014)
- use single and two-particle states as basis states
- interaction terms from symmetry + assumed form wrt momenta
- parameters of Hamiltonian determined from fits to finite-volume spectra
- Lippmann-Schwinger (or other methods) to extract infinite-volume resonances

Tetraquark operators

- determine impact on spectrum when tetraquark operators included
- single-site and displaced quarks

References

- S. Basak et al., Group-theoretical construction of extended baryon operators in lattice QCD, Phys. Rev. D 72, 094506 (2005).
- S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D **76**, 074504 (2007).
- C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys. Rev. D 83, 114505 (2011).
- C. Morningstar et al., Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD, Phys. Rev. D 88, 014511 (2013).
- J. Bulava et al., I = 1 and $I = 2 \pi \pi$ scattering phase shifts from $N_f = 2 + 1$ lattice QCD, submitted to Nucl. Phys. B. (2016).

Conclusion

- excited states are difficult!
- crucial role of interpolating operators for excited-state studies in lattice QCD
- large number of finite-volume energies in large number of channels now possible
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
- scattering phase shifts can be computed
- infinite-volume resonance parameters from finite-volume energies → need for simpler effective Hamiltonian/field theory techniques
- role of tetraquark operators to be studied