Hybrid Quarkonium with Non-Relativistic Effective Field Theories

Matthias Berwein

with: Nora Brambilla, Jaume Tarrús Castellà, Antonio Vairo based on: Phys. Rev. **D92** (2015) 11, 114019 [arXiv:1510.04299]

Technische Universität München, Physik Department, T30f

21.05.2016

Introduction: Quarkonium and XYZ exotics

Eichten et al 2008

ψ(4S) or hybrid π⁺π⁻J/w ψ(2D) ψ(3S) 4.0 η_c(3S) -2(2P) DD* Mass (GeV/c²) w(1³D.) 2 M(D) ψ(2S) η_c(2S) (1P) X_(1P) h_c(1P) 3.5 Charmonium family η.(15) 3.0 1+-0** 1++ 2** 1 ĭ ō

- $\bullet\,\,{\rm quarkonium}\colon\,Q\bar{Q}$ bound state
- hybrids: gluonic excitation
- additional light quarks: tetraquark, meson molecule, diquarkonium, etc

Olsen 2015

naa

Hybrids: theoretical approaches

	Horn and Mandula 1978
• treat hybrids as a three-body system $Q\bar{Q}g$ • add J^{PC} quantum numbers of gluon and quarkon	ium
Fluxtube model	Isgur and Paton 1983
• gluons assumed to form string between heavy quar	rks
• hybrids correspond to vibrational excitations of str	ing
Born-Oppenheimer (BO) approximation	Griffiths Michael and Rakow 1983
• determine energy spectrum of static quarks	
 determine energy spectrum of static quarks solve Schrödinger equation with static energy as p 	otential
 determine energy spectrum of static quarks solve Schrödinger equation with static energy as p 	otential
 determine energy spectrum of static quarks solve Schrödinger equation with static energy as p Effective Field Theory (EFT) treatment	otential
• determine energy spectrum of static quarks • solve Schrödinger equation with static energy as p Effective Field Theory (EFT) treatment • exploit scale hierarchy $M \gg p_{rel} \gg E_{kin}$ in system	otential natic expansion
• determine energy spectrum of static quarks • solve Schrödinger equation with static energy as p Effective Field Theory (EFT) treatment • exploit scale hierarchy $M \gg p_{rel} \gg E_{kin}$ in system • integrate out M (NRQCD) and p_{rel} (pNRCD)	otential natic expansion

Revision: QM perturbation theory

Split H into free and perturbation part, determine free spectrum:

$$H = H_0 + H_1$$
, $H_0 |n\rangle_0 = E_n^{(0)} |n\rangle_0$, $H|n\rangle = E_n |n\rangle_0$

Naive convergence criterion: $_0\langle n|H_1|n\rangle_0\ll E_n^{(0)}$, but at higher orders:

$$E_n = E_n^{(0)} + {}_0\langle n|H_1|n\rangle_0 + \sum_{k\neq n} \frac{\left|{}_0\langle k|H_1|n\rangle_0\right|^2}{E_n^{(0)} - E_k^{(0)}} + \dots$$

 \rightarrow NLO convergence criterion: $\left|_0 \langle k | H_1 | n \rangle_0 \right| \ll E_n^{(0)} - E_k^{(0)}$.

Degenerate PT: new basis of states $|h\rangle_0 \in \text{span}\left\{|n\rangle_0 \left| E_n^{(0)} \approx E_{n'}^{(0)} \right\}$ such that $H_0 + H_1$ diagonal: $_0\langle h'|H_0 + H_1|h\rangle_0 = \delta_{h'h}E_h^{(1)}$

$$E_{h} = E_{h}^{(1)} + \sum_{k \notin \{h\}} \frac{\left| {}_{0}\langle k|H_{1}|h\rangle_{0} \right|^{2}}{E_{h}^{(1)} - E_{k}^{(0)}} + \dots$$

QM perturbation theory for 1/M expansion

1/M expanded Hamiltonian through EFT (NRQCD)

Caswell and Lepage 1986 Bodwin, Braaten and Lepage 1995

$$H_0 = \int d^3 x \operatorname{Tr} \left[\boldsymbol{E}^2 + \boldsymbol{B}^2 \right]$$
$$H_1 = \int d^3 x \, \psi^{\dagger} \left(-\frac{\boldsymbol{D}^2}{2M_Q} - c_F \frac{g \boldsymbol{B} \cdot \boldsymbol{\sigma}}{2M_Q} \right) \psi + \int d^3 x \, \chi^{\dagger} \left(\frac{\boldsymbol{D}^2}{2M_{\bar{Q}}} + c_F \frac{g \boldsymbol{B} \cdot \boldsymbol{\sigma}}{2M_{\bar{Q}}} \right) \chi$$

(light quarks and higher 1/M terms are neglected, H_0 is static case)

Outline:

- find eigenstates and eigenvalues of H_0
- check if eigenvalues are degenerate
- calculate corrections with (non-)degenerate perturbation theory

Note: Different situation depending on the relative quark-antiquark distance r

M. Berwein (TUM)

200

イロト イポト イヨト イヨ

Symmetries of the static system

Static system has cylindric symmetry: $D_{\infty h}$ Elementary group transformations:

- Rotations R around Q- \bar{Q} axis
- CP: Space inversion across center of Q- \bar{Q} combined with charge conjugation
- Reflection M across plane with $Q\text{-}\bar{Q}$ axis

All other elements are combinations of these

A D > A D > A D > A D >

Static States labeled with associated quantum numbers Λ_{η}^{σ} :

- $\Lambda:$ rotational quantum number; labels $\Sigma,\,\Pi,\,\Delta$ correspond to $\Lambda=0,\,1,\,2$
- η : eigenvalue of CP: $g \cong +1$ (gerade), $u \cong -1$ (ungerade)
- σ : sign of reflections M; σ only relevant for Σ representations for $\Lambda \ge 1$: $\sigma = \pm$ corresponds to different projections of angular momentum

Eigenvalues of H_0

Eigenstates of H_0 are unknown, but lowest eigenvalues can be determined:

$$\langle X(T)|X(0)\rangle = \langle X|e^{-iH_0T}\sum |n\rangle_{00}\langle n|X\rangle = \sum \left|_0\langle n|X\rangle\right|^2 e^{-iE_n^{(0)}T}$$

If $|X_n\rangle$ has same quantum numbers as $|n\rangle_0$, then for those quantum numbers

$$E_n^{(0)} = \lim_{T \to \infty} \frac{i}{T} \ln \langle X_n(T) | X_n(0) \rangle$$

gives the lowest eigenvalue!

Lattice results:

- classification through quantum numbers $(\Lambda_{\eta}^{\sigma} \text{ representations of } D_{\infty h} \text{ group})$
- excited energies can be extracted with larger set of $|X_n\rangle$ states
- lowest states are Π_u and Σ_u^-
 - \rightarrow nearly degenerate at small r
 - \rightarrow well separated at large r

Study small r degeneracy with pNRQCD

M. Berwein (TUM)

Hybrids with pNRQCD

For
$$r \ll \Lambda_{\text{QCD}}^{-1}$$
 multipole expanded EFT: pNRQCD
 $H^{(0,0)} = \int d^3 R \operatorname{Tr} \left[\mathbf{E}^2 + \mathbf{B}^2 \right] + \int d^3 r d^3 R \operatorname{Tr} \left[S^{\dagger} V_s S + O^{\dagger} V_o O \right]$
 $H^{(0,1)} = \int d^3 r d^3 R \operatorname{Tr} \left[V_A \left(S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O + O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S \right) + V_B O^{\dagger} \{ \mathbf{r} \cdot g \mathbf{E}, O \} \right]$

Convenient states:
$$|X_{\Pi_u}\rangle = \mathbf{r} \times \mathbf{B}^a O^a^{\dagger} |\text{vac}\rangle$$
 $|X_{\Sigma_u^-}\rangle = \mathbf{r} \cdot \mathbf{B}^a O^a^{\dagger} |\text{vac}\rangle$

Degenerate energies:

$$\sum_{\Pi_u/\Sigma_u^-}^{(0)}(r) = V_o(r) + \Lambda_B + \mathcal{O}\left(r^2\right)$$

with gluelump mass $\Lambda_B = \lim_{T \to \infty} \frac{i}{T} \ln \langle vac | \boldsymbol{B}^a(T) \cdot \boldsymbol{B}^a(0) | vac \rangle$

E

Degeneracy is broken through $\mathcal{O}\left(r^2
ight)$ terms given through 4-gluon correlators

 $\langle \operatorname{vac}|B_i^a(T)E_j^b(t)E_k^c(t')B_l^d(0)|\operatorname{vac}\rangle$

200

◆ロト ◆聞ト ◆注ト ◆注ト

Beyond the static limit

Lift short distance degeneracy with next term in expansion

$$H^{(1,-2)} = \int d^3r d^3R \operatorname{Tr}\left[-S^{\dagger} \frac{\boldsymbol{\nabla}_r^2}{2\mu} S - O^{\dagger} \frac{\boldsymbol{\nabla}_r^2}{2\mu} O\right]$$

In the pNRQCD power counting $H^{(1,-2)} \gg H^{(1,0)}$ and $H^{(1,-2)} \sim H^{(0,0)}$ In degenerate PT: find states that diagonalize $H^{(0,0)} + H^{(1,-2)}$

Write proper eigenstates of $H^{(0,0)}$ generically as $|n\rangle_0 = \hat{n} \cdot G^a O^{a\dagger} |\text{vac}\rangle$ For Σ_u^- and Π_u : projectors $\hat{n}_{\Sigma} \parallel r$, $\hat{n}_{\Pi} \perp r$, and G some 1⁺⁻ gluon

Matrix elements given by:

$$_{0}\langle n'|H^{(0,0)} + H^{(1,-2)}|n\rangle_{0} = \delta_{n'n}E_{n}^{(0)}(r) + \hat{n}\cdot\frac{\boldsymbol{\nabla}_{r}^{2}}{2\mu}\hat{n}$$

Differential operator, so need wave function to diagonalize!

M. Berwein (TUM)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Coupled radial Schrödinger equations

Projection vectors in matrix elements allow for two different solutions (coupled or uncoupled) for the Σ_u^- and Π_u radial wave functions:

1st solution

$$\begin{bmatrix} -\frac{1}{2\mu r^2} \,\partial_r r^2 \partial_r + \frac{1}{2\mu r^2} \begin{pmatrix} l(l+1)+2 & 2\sqrt{l(l+1)} \\ 2\sqrt{l(l+1)} & l(l+1) \end{pmatrix} + \begin{pmatrix} E_{\Sigma}^{(0)} & 0 \\ 0 & E_{\Pi}^{(0)} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \psi_{\Sigma} \\ \psi_{\Pi} \end{pmatrix} = \mathcal{E} \begin{pmatrix} \psi_{\Sigma} \\ \psi_{\Pi} \end{pmatrix}$$

2nd solution

$$\left[-\frac{1}{2\mu r^2} \,\partial_r \,r^2 \,\partial_r + \frac{l(l+1)}{2\mu r^2} + E_{\Pi}^{(0)} \right] \psi_{\Pi} = \mathcal{E} \,\psi_{\Pi}$$

- ullet energy eigenvalue ${\cal E}$ gives hybrid mass: $m_H=m_Q+m_{ar Q}+{\cal E}$
- l(l+1) is the eigenvalue of angular momentum $m{L}^2 = \left(m{L}_{Qar{Q}} + m{L}_g
 ight)^2$
- \bullet the two solutions correspond to ${\bf opposite\ parity\ states:}\ (-1)^l$ and $(-1)^{l+1}$
- \bullet corresponding eigenvalues under charge conjugation: $(-1)^{l+s}$ and $(-1)^{l+s+1}$

M. Berwein (TUM)

Results I: Comparison to BO approximation

Braaten, Langmack and Smith 2014

For Hybrid multiplets:

- no distinction between opposite parity states in BO
- mixed states lie lower than pure
- discrepancy for H_2 , H_3 and H_5 due to different potential fits

局▶

Results II: Comparison to experiment

- comparison based on quantum numbers and mass
- ullet error bands from uncertainty in gluelump mass Λ_B
- several candidates, but most violate heavy quark spin symmetry in decays
- $\bullet\,$ only compatible state is Y(4220), but not yet well established

Results III: Comparison to lattice

Hadron Spectrum Collaboration 2012

• I = • • • •

- in EFT distinction between different spins only at order $1/M^2$
- good agreement for relative distance between spin-averaged multiplets
- some overall shift for absolute values

M. Berwein (TUM)

Conclusions and outlook

Conclusions

- study of hybrids in EFT framework (NRQCD and pNRQCD)
- study of the spectrum of the static Hamiltonian with non-static corrections
- short distance degeneracy of static energies
- mixing of different static states
- breaking of degeneracy between opposite parity states

Outlook

- development of full EFT treatment
- inclusion of spin dependent corrections
- $\bullet\,$ inclusion of light quark contributions $\rightarrow\,$ study of tetraquarks or decays

Thank you for your attention!

イロト イポト イヨト イヨト