Round Table Discussion Field theory at finite temperature : EFTs and lattice methods

Chair N. Brambilla, Members: H. Meyer, P. Petreczky, A. Rothkopf, J. Soto, A. Vairo

First: set the stage! An outstanding application of these techniques is the case of the study of quark gluon plasma formation in heavy ion collisions at LHC : what are the physical conditions (temperature, energy) density..) and what are the observables? How can we interpret/calculate these observables in EFT/lattice?

Experimental data: How do we gain insight?

LHC heavy-ion data: Where do we stand?

Dawn of the highest LHC Pb+Pb energies: 2.76TeV

Many models describe current data almost equally well:

How can EFT/LQCD help to constrain further? Need different observables?

 Resummed perturbative calculations of important quantities like the pressure, the Polyakov loop/free energy, Polyakov loop correlation, transport coefficients are performed within EFTs (HTL, EQCD, NRQCD and pNRQCD at finite T). The same quantities are calculated on the lattice: do the two calculations agree or match? in which cases yes and when not? why? how can we exploit this?

EQCD at work

EQCD works for spatial string tension and quark number correlations (purely chromo-magnetic observables)

EQCD works for quark number susceptibility maybe because it is dominated by scale T and the contribution electro-static sector is s mall $m_D \sim g T \mu /(2\pi)$ magnetic sector does not contribute

EQCD work less well ...

EQCD works only for T>2GeV for the static quark free energy/entropy even-though magnetic contribution is small, subtle interplay between scale T and gT contributions? Large g^6 contribution from scale T? Need full g^6 calculation ...

Weak coupling without EQCD:

Large scale dependence !

Other open issues:

Power law corrections $(\Lambda_{QCD}/T)^m$?

Polyakov loop/Wilson loops at short distances vs. pNRQCD and EQCD ? (at what distances screening sets in ?)

ChiPT at T>0 ?

- Q1: Resummed perturbative calculations of important quantities like the pressure, the Polyakov loop/free energy, Polyakov loop correlation, transport coefficients are performed within EFTs (HTL, EQCD, NRQCD and pNRQCD at finite T). The same quantities are calculated on the lattice: do the two calculations agree or match? in which cases yes and when not? why? how can we exploit this?
- **Q2**: How to use the EFTs combined with lattice to define and calculate objects of great physical importance like:

the qqbar potential at finite T (give evolution in real time) R_AA q_hat and jet quenching transport coefficients

Complex in-medium inter-quark potential

EFT definition of V: matching of pNRQCD wavefunction correlator to QCD Wilson loop

Re[V] and Im[V] encoded in spectrum of Wilson line correlators (Bayesian inference)

Single temperature dependent parameter m_D seems to govern the in-medium modification

Complex in-medium inter-quark potential

EFT <u>definition</u> of V: matching of pNRQCD wavefunction correlator to QCD Wilson loop

Re[V] and Im[V] encoded in spectrum of Wilson line correlators (Bayesian inference)

Single temperature dependent parameter m_D seems to govern the in-medium modification

In-medium $Q\overline{Q}$ yields from EFTs on the lattice

- Q1: Resummed perturbative calculations of important quantities like the pressure, the Polyakov loop/free energy, Polyakov loop correlation, transport coefficients are performed within EFTs (HTL, EQCD, NRQCD and pNRQCD at finite T). The same quantities are calculated on the lattice: do the two calculations agree or match? in which cases yes and when not? why? how can we exploit this?
- **Q2**: How to use the EFTs combined with lattice to define and calculate objects of great physical importance like
- **Q3**: How to use lattice combined with EFTs to obtain determinations of out of equilibrium quantities ?

Correlator of $A_0^a = \bar{\psi}\gamma_0\gamma_5\frac{\tau^a}{2}\psi$ corresponding to $\rho(\omega, T) - \rho(\omega, 0)$: ($T = 170 \text{MeV} < T_c$)

Implications for the hadron resonance gas model!?

Non-static screening masses and transport coefficients

Linear response along with a constitutive equation for the vector current $J \Rightarrow$

$$G_E^{J_0 J_0}(\omega_n, k) \stackrel{\omega_n, k \to 0}{=} \frac{\chi_s D k^2}{\omega_n + D k^2} \qquad \Rightarrow \quad E(\omega_n)^2 \stackrel{\omega_n \to 0}{\sim} \frac{\omega_n}{D}$$

 $\chi_s = \text{static susceptibility}, D = \text{diffusion coefficient}, E(\omega_n) = \text{screening mass in sector } \omega_n$

In the limit $T \to \infty$, extrapolating the screening masses in the lowest Matsubara sectors to $\omega_n = 0$ gives the correct result, 1/(T D) = 0.

Brandt, Francis, Laine, HM 1408.5917; Kinetic theory: Arnold, Moore & Yaffe hep-ph/0111107

- Q1: Resummed perturbative calculations of important quantities like the pressure, the Polyakov loop/free energy, Polyakov loop correlation, transport coefficients are performed within EFTs (HTL, EQCD, NRQCD and pNRQCD at finite T). The same quantities are calculated on the lattice: do the two calculations agree or match? in which cases yes and when not? why? how can we exploit this?
- **Q2**: How to use the EFTs combined with lattice to define and calculate objects of great physical importance like
- **Q3**: How to use lattice combined with EFTs to obtain determinations of out of equilibrium quantities ?
 - **Q4**: can these results and techniques be impactful on other fields: e.g. cosmology and the physics of early universe; condensed matter..