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Outline

> Brief overview of equilibrium properties

» Near-equilibrium properties
> formalism
> two channels: light-quark pseudoscalar and vector channels
> variational method for dense spectrum?
> screening masses and their relation to transport properties.
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Motivation

Strongly interacting matter at temperatures 7' = 100 — 500 MeV
» probed in heavy-ion collisions

> state of matter for the first microsecond after Big Bang
Thermal physics:
(A) = %Tr{e_BHA}, Z = Tr {e )

Matsubara formalism particularly well-suited for equilibrium physics:
path integral formulation

> imaginary time direction has an extent h/(kgT)

> boson fields have periodic, fermion fields antiperiodic boundary conditions.

— particularly well suited for lattice QCD: Z = [ DU Dy Dy e™5.
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Thermodynamic potentials
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Fig. from review by Soltz et al. 1502.02296

> at T = 260MeV, puorm = p/pss ~ 1/2:
far from weakly interacting quarks and gluons.

» (e —3p)/[3(e+p)] ~ 1/3: large departure from a scale-invariant system

» HRG model works well up to 7" = 160 MeV.




Near-equilibrium properties

Typical questions:

» What quasiparticles are there in the system?

» How fast does a perturbation of a given wavelength dissipate in the
system?

» What is the production rate of photons?
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Formalism

e Relation between the Euclidean correlator and the spectral function:
dw

Goonp) /d3:v P (T (2)(0)) = /000 - p(w,p)%

Alternatively,

7 i 0 wplw,x
Gr(wn, x) :/0 dxo "0 (J(z)J(0)) 22/0 do 2P )

w? + w2
> for J = Ji™ electromagnetic current, p(w, 0) o~ 6xsDw
(xs = static susceptibility of electric charge, D= diffusion coefficient)
> in the low-T" phase, J;™ can excite e.g. an w-meson-like quasiparticle.

ar _ 23 Q% plkk)
a3k T 2(27)3k ePF_1

» photon rate:

* inverse problem for p(w, p)
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Motivation: expected thermal changes in spectral functions

Isoscalar vector channel: spectral fct. of J; = %(ﬂ%ﬂ + dvid)

7

SND e*e >’ ——
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N=4 SYM A=00

intercept=3 s D/T

tanh(o / 2T) py(@,T) / o
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> presence of weakly coupled quasiparticles = transport peak at w = 0;
is it really there at T' =~ 260MeV ?

SND hep-ex/0305049 D = diffusion coefficient; x s = static susceptibility.
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Some basics on the inverse problem

Linearity: Zlﬁ(@) G(t:) = /O°° dfw p(w) Zqi(@) %

=1

5(@,w)

> choose the coefficients g; (@) so that the ‘resolution function’ S(c@w) is as
narrowly peaked around a given frequency @ as possible
(idea behind the Backus-Gilbert method, [used in Robaina et al. 1506.05732])

0.25 T T T

0.2

0.15 |

Resolution function at w = 4
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The pion quasiparticle in the low-temperature phase

» Chiral symmetry is spontaneously broken for T < T.: —(1%)) > 0.

» Goldstone theorem = a divergent spatial correlation length exists in the
limit m — 0.

» somewhat less obvious: a massless real-time excitation exists:
the pion quasiparticle.

» dispersion relation: wp = u\/m2 + p? + ...; m, = screening mass(!)
[Son and Stephanov, PRD 66, 076011 (2002)]

» pion dominates Euclidean two-point function of Ag and of P at o = 3/2

T=0: pion mass = 267(2) MeV
e N
T = 169MeV : quasiparticle mass = 223(4)MeV screening mass = 303(4)MeV.

Implications for the hadron resonance gas model!?

Robaina et al. 1406.5602; 1506.05732
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An all-temperature analysis of the isovector vector channel at p =0
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> global fit with to all temperatures using sum rule [ dw Ap(w)/w =0
and p(w) ~ Aw? at large w, A temperature-independent (OPE).

» area under transport peak ~ X5<v2> ~~ sensitive to pion dispersion relation
for T < Te.

» gradual disappearance of the p as T increases.

Francis et al. (N = 2), 1512.07249, N; x 642 lattices, My |r=0 = 270MeV
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Screening masses: static and non-static

Consider perturbating the Hamiltonian,
o) = 1~ [ d'y o(t.9) I v)

with the external perturbation given by

$(t,y) = o(y)e'0(~t),  w>0.

Linear response =
S(J(t=0,2)) = G (wn, ), for w = wn = 27Tn.
| —

Euclidean corr.

| Correlation length in Matsubara sector w,
= length scale over which a perturbation

with the time dependence e

/ (n >0).

wnt s screened

o)
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Screening masses at high temperatures

Weak-coupling picture of flavor-non-singlet screening masses:

v

fermions have an effective mass of at least 71" = dimensional reduction

they form non-relativistic, 24-1d bound states of size O(my")
Laine, Vepsalainen hep-ph/0311268

expect bound state to be described by a Schrédinger equation in 24-1d.

Non-static sector: potential has a connection with an effective potential
used in the calculation of the dilepton production rate

[Aurenche, Gelis, Moore, Zakaret hep-ph/0211036; Caron-Huot 0811.1603;
Panero, Rummukainen, Schafer 1307.5850].
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Vector screening masses: lattice vs. EFT

15 15 .
14 r M/T . e 1 14 r M —
13 . a0 .
12 12
1"h o i
10 10
= Voo ® A Voo '
o — Vgg = ° e Vg =
Vroa Vi s
8 Eme=m e 8l e 4
—— . JR— —
7 7 —— —
— 2 —— P
6" ] 6 ]
JE——
5 1 5. B
4 4
3 1 3 —
2 ] 2 g
10 1 1h ,
T=254MeV T=338MeV
0
N=0y N=Oper Nl N=lpen N=2  N=2pen =0z N=Oper Nl N=Tpen N=2p  N=2pet
T = 254 MeV T = 340 MeV

Satisfactory agreement between lattice QCD and the EFT predictions.

Brandt et al. 1404.2404; N; = 16 and N; = 12, Ny = 64; m,|r= 0 = 270MeV
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Checking for systematics at 17" = 254MeV
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EFT vs. 16x64% vs. 12x48% vs. 12 x 64° Francis et al. Preliminary
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Static transverse vector screening mass at 7' = 508MeV
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> now screening mass above 277" !
(red line is O(g?) prediction; black line is 277T).

[A. Steinberg, K. Zapp et al., in prep.; 16 X 643]
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n = 1 longitudinal vector screening mass at 7' = 508MeV
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> 1%-level agreement with O(g?) prediction (red line; black line is 27T).

[A. Steinberg, K. Zapp et al., in prep.]
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Non-static screening masses and transport coefficients

Linear response along with a constitutive equation for the vector current J =

w Dk‘2 wp—0 W
GJoJo ok n,k—=0  Xs 2 wn= n
E (w ’ ) wn + Dk2

Xs = static susceptibility, D = diffusion coefficient, E(w,,) = screening mass in sector w,

1.2 Intercept=1/(27T D) 1
3 1)
= Ad
8 o8 S/ICFT
&= In the limit " — oo, extrapolating
c . .
s 06 1 the screening masses in the lowest
o4 ... Weak coupyin. | Matsubara sectors to w, = 0 gives
2 "o, ing the correct result, 1/(T D) = 0.
~ 02| 'nn-....@,J
kinetic theory |
0 L L
0 1 2
/21T

Brandt, Francis, Laine, HM 1408.5917; Kinetic theory: Arnold, Moore & Yaffe hep-ph/0111107

Transport & Lattice QCD



Diffusion Coeff. from analytic continuation of screening correlator

w p(w, 2)
w? + w3

Ge(wn, k1L =0,2) —2/ dw

> this spectral representation provides the analytic continuation of Gg

> for large z: given Gg(wn, k1 =0,2), n=0,1,2,... reconstruct
w p(w, 2)
e ki =0,2)=2 dw
(UJE7 s Z / 2+WE

> fit Ge(we, k1 =0,2) ~ e Ewpllzl o get E(wEg).
» observe diffusive regime FE(wg)? wEg =7
» NB. causality = E(wn) > |wn|, because Wightman correlator

G>(t, ) =7 Ze B (n]jo(t, @)jo(0)|n) = Tgew"tGE(wmiB)

should be analytic in the spacelike region t? — x? < 0.
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Variational method for dense spectra

» The variational method (using a basis of N operators with same quantum
numbers) is very successful at 7' = 0 to determine the low-lying spectrum
see e.g. Blossier et al., 0902.1265]. Can it in some sense be generalized to 7" > 0
and/or to the higher part of the spectrum?

> At T =0, large Euclidean time x( is used to effectively ‘reduce’ the
Hilbert space to an N-dimensional subspace.

> For the higher-lying spectrum, this is no longer practical: the spectrum is
too dense.
And at finite-temperature, 3 kinematic limitation 0 < z¢ < 1/(27).

> ~~» make use of a matrix of Backus-Gilbert spectral functions, p;;(®).

T. Harris, HM, D. Robaina; T. Harris, talk at Trento workshop 2-6 May 2016

Transport & Lattice QCD



T channel
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BG matrix estimator j;(@) in T channel for 3/a=128
Operator basis {\7,]‘ (x) =>4 X,T(X)O'k'l/)[(X)} where 1 (x) = 1 (x) and

X — 2
Valy) =3 Ty, y(y) = Z<4(0—2”) —3)e O ),

Spectral reconstruction with a variational method

13717
B



Our proposal

Solve the GEVP
pij(@)vf (@) = X" (@, 20)GR,ij (to)v] (@),

where pi; (@) = >, qe(@)GE,i;(te) is the Backus-Gilbert spectral function.

» Corresponds to extremizing ®(v) = (v, p(@) v) + A(v, Ge(to) v)
“maximize the local spectral weight of the operator for a fixed
normalization in the UV"; R
the width is given by the width of the resolution function (@, w).

» If the local spectrum around @ contains r states, rank(p;;(@)) = r,
because residue of pole contribution factorizes, Gg ;;(t) ~ O} O‘?e’E"t;
diagnostic to detect resonances/quasiparticles.

> If O,(@) = Zj\;l v} (@)O; couples best to region around @, use (OyV,,)

to measure coupling of the e.m. current to that region.
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T channel
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Eigenvalues in Y channel for 3/a=128

Spectral reconstruction with a variational method 13717
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Conclusion

Progress in lattice QCD on near-equilibrium quantities:

» current data quality: Ny ~ 24, few-permille precision on
correlation functions, quenched continuum results.

» variational method can be useful also when individual energy
eigenstates cannot be resolved;
application at T' = 0: determine R-ratio with moderate
frequency resolution above limit of applicability of Liischer’s
finite-volume formalism;
NB. p(w) has a smooth infinite-volume limit, p(w) does not.

» screening masses & relevance to diffusion coefficient D and
shear viscosity 1.
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Backup slides
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4 topics

> the pion quasiparticle in the low-temperature phase of QCD
» spectral functions in the vector channel
» screening masses and their physical interpretation

> a variational method for dense spectrum.
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Deconfinement: does it coincide with chiral restoration?
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> Not a completely sharp question.

\{

practically at the same temperature as chiral restoration.

> strangeness fluctuations: rise delayed by about AT = 20MeV.

v

Successful predictions of the hadron resonance gas model (HRG).

Fig. from S. Borsanyi et al. 1112.4416
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Light-quark number susceptibility: suggests that deconfinement occurs



Amplitudes of vector screening states: lattice vs. EFT
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Prediction for the amplitude (B|V;|0) is harder to get; better with non-pert.
potential.
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Comparison with phenomenological models
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HM 1512.07249; model by Rapp & Hohler, Phys.

3 35

Lett. B 731, 103 (2014).
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Pion quasiparticle: test of the dispersion relation
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> also the residue in two-point function of Ay and of P are predicted

> dispersion relation & residue compatible with correlators at small p # 0.

Gataop) = 5 [ o™ (a3 4300) = [T 32 oo P20,

Ansatz : p”(w,p) = a1(p)d(w — wp) + az2(p)(1 — e~ “?)0(w — ¢).

24 x 64> thermal ensemble, T = 169MeV, My |r=0 = 270MeV 1506.05732.

Transport & Lattice QCD



Portrait of QCD at finite temperature

From the lattice:

» low-T" phase: hadron resonance gas model describes equilibrium properties
very well

» chiral + deconfinement crossover transition around 7' = 155MeV

> high-T phase: multiplicity of degrees of freedom consistent with
quarks+gluons

> ...but many quantities far from weak-coupling predictions at least until
T =~ 2.5T..

In addition, heavy-ion phenomenology points to a medium with very small
shear viscosity/entropy density in the range T, < T < 2.5T, e.g.

Jsn 0.12 RHIC
M5~ 02 ALICE

Gale, Jeon, Schenke 1301.5893; White Paper 1502.02730

All this indicates that the partonic degrees of freedom are strongly correlated.
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Additional information at non-vanishing spatial momentum

T=LIT, T=13T,
20 ! 20 T T T T T T T
~ = best estimate from p()CD. ~ = best estimate from pQCD
— polynomial interpolation — polynomial interpolation
=+ AQS/CFT ADS/ICFT
10 10f-
= =
3 3
= =
- >
=9 =9
00 00
1 J n 1 L | n L L
0.0 20 40 6.0 80 00 20 40 6.0 8.0
w/T

w/T
> allows for additional constraints on the spectral function

> impact on the diffusion coefficient D and the photon production rate
(from w = |k|)

Ghiglieri, Kaczmarek, Laine, F. Meyer 1604.07544; see also Foley et al. hep-lat/0610061, HM
0907.4095




Spectral sum rules for Ap(w, k,T) = p(w,k,T) — p(w, k,0)

1 oo

— dwwApL(w,k,T) = o0, vk [1107.4388]
2T J _ o

1 * dw

— —Apﬁ(w,k:,T) = xs—rk2+0(kY),

2T J oo w

1 * dw

Py 7Ap€(ka7T) = “itk2+o(|k‘4)7

21 ) oo W
1 o0 L _ T
— dww Ap? (w, k, T) = —mPy)| vk [1406.5602]
21 ) _ oo A 0

3 interpretation of k; and k¢ in terms of screening/antiscreening

of electric probe charges and currents placed in the medium Brandt et al. 1310.5160
1 ik * dw coshw(B/2 — zo)
- d3 ik-x va Va(o — / L ,k,T ,
3 Free 0p@vro) = [T S ek n) SRR
kik ik * dw coshw(B/2 — zo)
1 il 3 ik-x a a T
—=(d; — d V; V4 (0 = — k,T) ——M—=
H(ou=5gt) [t et @) = [T bk ) PRI,
1 —ik- *° dw cosh(w(B8/2 — z0))
- d3 ik-x A2(0) A2 _ / L k. T
3 [ et agoazE) = [T E ke n ) S
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Some basics on the inverse problem

Linearity: Z ci(w) G(t:) = /0°° (217: p(w) Zci(u’)) %

=1 i=1

5(@,w)

» For given {t;}, a certain resolution in frequency can be achieved;
however, the required c¢; are strongly oscillating (ill-posed problem)

» = finite accuracy of data further limits the resolution

> if you know a priori that the spectral function is slowly varying on the
scale Aw ~ T the problem is again well posed.

> problem: whether there is a narrow transport peak or narrow quasiparticle
peaks is precisely what we want to know.

Methods used: fit ansatz; maximum entropy method (MEM); new Bayesian method [Burnier &
Rothkopf 1307.6106], S. Kim et al. 1511.04151; stochastic optimization method, H.-T. Shu et al.
(1510.02901) and ‘stochastic analytic inference’ (H. Ohno et al.).
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