Soft collinear effective theory for leptonnucleon scattering

RICHARD HILL

TRIUMF Perimeter Institute U. Chicago

Symposium on Effective Field Theory and Lattice Gauge Theory

TUM Institute for Advanced Study 20 May 2016

- overview of proton radius puzzle
- Q² dependence of radius from electron-proton scattering
- soft-collinear effective theory for large logs in radiative corrections to lepton-nucleon scattering
- implications
- summary and outlook

based on 1605.02613, and related work with John Arrington, Gabriel Lee, Gil Paz

Some facts about the Rydberg constant puzzle (a.k.a. proton radius puzzle)

I) It has generated a lot of attention and controversy

2) The most mundane resolution necessitates:

- 5σ shift in fundamental Rydberg constant
- discarding or revising decades of results in e-p scattering and hydrogen spectroscopy

Some facts about the Rydberg constant puzzle (a.k.a. proton radius puzzle)

I) It has generated a lot of attention and controversy

"The good news is that it's not my problem"

2) The most mundane resolution necessitates:

- 5σ shift in fundamental Rydberg constant
- discarding or revising decades of results in e-p scattering and hydrogen spectroscopy

Some facts about the Rydberg constant puzzle (a.k.a. proton radius puzzle)

I) It has generated a lot of attention and controversy

2) The most mundane resolution necessitates:

- 5σ shift in fundamental Rydberg constant
- discarding or revising decades of results in e-p scattering and hydrogen spectroscopy

This problem has broad ownership, e.g.:

3) Systematic effects in electron-proton scattering impact neutrino-nucleus scattering, at a level large compared to long baseline precision requirements

What is the proton charge radius?

recall scattering from extended classical charge distribution:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{pointlike}} |F(q^2)|^2$$

$$F(q^2) = \int d^3r \, e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \rho(\boldsymbol{r})$$

$$= \int d^3r \left[1 + i\boldsymbol{q}\cdot\boldsymbol{r} - \frac{1}{2}(\boldsymbol{q}\cdot\boldsymbol{r})^2 + \dots\right] \rho(r)$$

$$= 1 - \frac{1}{6}\langle r^2 \rangle \boldsymbol{q}^2 + \dots$$

for the relativistic, QM, case, define radius as slope of form factor

$$r_E^2 \equiv 6 \frac{d}{dq^2} G_E(q^2) \Big|_{q^2=0}$$

(up to radiative corrections)

 $\langle J^{\mu} \rangle = \gamma^{\mu} F_{1} + \frac{i}{2m_{p}} \sigma^{\mu\nu} q_{\nu} F_{2}$ $G_{E} = F_{1} + \frac{q^{2}}{4m_{p}^{2}} F_{2} \qquad G_{M} = F_{1} + F_{2}$

Disentangle 2 unknowns, R_{∞} and r_E , using well-measured 1S-2S hydrogen transition *and*

Disentangle 2 unknowns, R_{∞} and r_E , using well-measured 1S-2S hydrogen transition *and*

(I) another hydrogen interval

Disentangle 2 unknowns, R_{∞} and r_E , using well-measured 1S-2S hydrogen transition *and*

(I) another hydrogen interval

(2) electron-proton scattering determination of r_E

Disentangle 2 unknowns, R_{∞} and r_E , using well-measured 1S-2S hydrogen transition *and*

(I) another hydrogen interval

(2) electron-proton scattering determination of r_E

(3) a muonic hydrogen interval (2S-2P)

Disentangle 2 unknowns, R_{∞} and r_E , using well-measured 1S-2S hydrogen transition *and*

(I) another hydrogen interval

(2) electron-proton scattering determination of r_E

(3) a muonic hydrogen interval (2S-2P)

 5σ discrepancy in Rydberg constant from (1+2) versus (3)

muonic hydrogen Lamb shift measurement

Pohl et al., Nature 466, 213 (2010)

muonic hydrogen Lamb shift measurement

Pohl et al., Nature 466, 213 (2010)

Radius defined as slope. Requires data over finite Q² range

Radius defined as slope. Requires data over finite Q² range

Radius defined as slope. Requires data over finite Q² range

Underlying QCD tells us that Taylor expansion in appropriate variable is rapidly convergent

Systematically improvable, quantifiable uncertainties

experimental landscape: electron-proton scattering

Tension between radius extracted from different Q² ranges

Ο

 $\delta r \, [\mathrm{fm}]$

0.03-

0

Tension between radius extracted from different Q² ranges

Are radiative corrections under control?

Large logarithms spoil QED perturbation theory when $-q^2=Q^2 \sim GeV^2$

A standard ansatz sums leading logarithms by exponentiating 1st order:

$$|F(q^2)|^2 \left(1 - \frac{\alpha}{\pi} \log \frac{Q^2}{m_e^2} \log \frac{E^2}{(\Delta E)^2} + \dots\right) \to |F(q^2)|^2 \exp\left[-\frac{\alpha}{\pi} \log \frac{Q^2}{m_e^2} \log \frac{E^2}{(\Delta E)^2}\right]$$

Yennie, Frautschi, Suura, 1961

Captures leading logarithms when

$$Q \sim E \,, \quad \Delta E \sim m_e$$

As consistency check, should find the same result for resumming:

$$\log^2 \frac{Q^2}{m_e^2} \qquad \text{vs.} \quad \log \frac{Q^2}{m_e^2} \log \frac{E^2}{(\Delta E)^2}$$

- quoted systematics in A1 electron-proton
 scattering data are 0.2-0.5 %
- leading order radiative corrections ~30%

 need to systematically account for subleading logarithms, recoil, nuclear charge and structure

- leading order radiative corrections ~30%

- need to systematically account for subleading logarithms, recoil, nuclear charge and structure

- quoted systematics in A1 electron-proton
 scattering data are 0.2-0.5 %
- leading order radiative corrections ~30%

 need to systematically account for subleading logarithms, recoil, nuclear charge and structure

Basics of soft-collinear effective theory

- degrees of freedom:
 - hard momenta \rightarrow Wilson coefficients of effective operators

- soft and collinear fields constrained by multiple gauge symmetries, organized by power counting in m_e/Q

Bauer et al. hep-ph/0005275,0011336; Chay and Kim hep-ph/ 0201197; Beneke et al. hep-ph/0206152; Hill and Neubert hep-ph/ 0211018, ...

factorization

 $d\sigma \sim (\text{hard}) \times (\text{collinear}) \times (\text{soft})$

resummation

- governed by universal anomalous dimensions

Becher, RJH, Lange, Neubert hep-ph/0309227; Becher and Neubert 0903.1126, 0904.1021; Beneke, Falgari and Schwenn 0907.1443, ...

factorization

Sudakov form factor at one loop:

Hard
$$F_H(\mu) = 1 + \frac{\alpha}{4\pi} \left[-\log^2 \frac{Q^2}{\mu^2} + 3\log \frac{Q^2}{\mu^2} - 8 + \frac{\pi^2}{6} \right]$$

Collinear
$$F_J(\mu) = 1 + \frac{\alpha}{4\pi} \left[\log^2 \frac{m^2}{\mu^2} - \log \frac{m^2}{\mu^2} + 4 + \frac{\pi^2}{6} \right]$$

Soft
$$F_S(\mu) = 1 + \frac{\alpha}{4\pi} \left[2 \log \frac{\lambda^2}{\mu^2} \left(\log \frac{Q^2}{m^2} - 1 \right) \right]$$

Large logarithms regardless of choice for μ

F_s: exponentiates (evaluate at any scale) F_j: evaluate at μ ~m F_H: evaluate at μ ~M~Q

 $F = F_H F_J F_S$

Two photon exchange

• Nuclear charge corrections introduce new spin structures (helicity counting: 3 amplitudes at leading power in me/Q)

$$F_H(\mu)\gamma^\mu \otimes \gamma_\mu \to \sum_{i=1}^3 c_i(\mu) \,\Gamma_i^{(e)} \otimes \Gamma_i^{(p)}$$

• In principle, can use e+ and e- data to separately determine I-photon exchange and 2-photon exchange contributions to c_i

• However, with available data, measure combination of I - and 2-photon contributions.

• Regardless of treatment of hard coefficients, remaining radiative corrections are universal

- J: refers to collinear region, same as before

- S: include nuclear charge for general soft function (computed through 2loop order)

- $H(\mu)/H(M)$: must now account for large logs in this factor

resummation

governed by Wilson loops with cusps:

$$\bar{h}iv \cdot Dh \to \bar{h}^{(0)}S_v^{\dagger}iv \cdot DS_v h^{(0)} = \bar{h}^{(0)}iv \cdot \partial h^{(0)}, \quad S_v(x) = P \exp\left[i \int_{-\infty}^0 dsv \cdot A_s(x+sv)\right]$$

renormalization of hard function of interest:

solution, summing large logarithms:

$$\log \frac{H(\mu_L)}{H(\mu_H)} = -\frac{\alpha}{2\pi} \log^2 \frac{\mu_H^2}{\mu_L^2} + \dots$$

$$\begin{split} d\sigma &= H(M) \times \frac{H(\mu)}{H(M)} \times J(\mu) \times S(\mu) \\ & \overbrace{} \\ \textbf{total radiative} \\ \textbf{correction} \\ \textbf{numerically:} \ \alpha L^2 &= \alpha \log^2 \frac{Q^2}{m^2} \sim 1 \quad \Rightarrow \quad \alpha L \sim \alpha^{\frac{1}{2}} \ \textbf{, etc.} \end{split}$$

Comparison to previous implementations of radiative corrections, e.g. in AI analysis of electron-proton scattering data

- discrepancies at 0.5-1% compared to currently applied radiative correction models (cf. 0.2-0.5% systematic error budget of A1)
- conflicting implicit scheme choices for IPE and 2PE
- complete analysis: account for floating normalizations, correlated shape variations when fitting together with backgrounds

EFT analysis clarifies several issues involving conflicting and/or implicit conventions and scheme choices

I) Scheme choice and definition of radius and "Born" form factors

2) Scheme dependence of two-photon exchange

3) Limitations of naive exponentiation

I) Scheme choice and definition of radius and "Born" form factors

$$\langle J^{\mu} \rangle = \bar{u}_{v'} \left[\tilde{F}_1 \gamma^{\mu} + \tilde{F}_2 \frac{i}{2} \sigma^{\mu\nu} (v'_{\nu} - v_{\nu}) \right] u_v$$

Massive particle form factor (e.g. for proton):

$$\tilde{F}_i = F_H F_S$$

$$F_{H}(q^{2}, \mu = M) \equiv F_{i}(q^{2})^{\text{Born}} \equiv \tilde{F}_{i}(q^{2})F_{S}^{-1}(w, \mu = M)$$
hard coefficient soft function

Multiple conventions in the literature. Different "Born" form factors, different radii (differences typically below current precision)

2) Scheme dependence of two-photon exchange

As for form factors, define hadronic functions in the general $2\rightarrow 2$ scattering process as the hard component in the factorization formula at factorization scale $\mu=M$

Prevailing conventions have used conflicting μ =M for I photon exchange, μ =Q for 2 photon exchange

A crude estimate of uncertainty in the 2 photon exchange subtraction

- 3) Limitations of naive exponentiation
 - Renormalization analysis for subleading logs :

$$\log \frac{H(\mu_L)}{H(\mu_H)} = -\frac{\alpha}{2\pi} \log^2 \frac{\mu_H^2}{\mu_L^2} + \dots$$

 \Rightarrow New terms at order $\alpha^2 L^3$, $\alpha^2 L^2$, $\alpha^3 L^4$, ...

• Total versus individual real photon energy below ΔE :

$$S^{(2)} = \frac{1}{2!} [S^{(1)}]^2 - \frac{16\pi^2}{3} (L-1)^2 \qquad S = \sum_n \left(\frac{\alpha}{4\pi}\right)^n S^{(n)}$$

 \Rightarrow New terms at order $\alpha^2 L^2$

complete analysis: account for floating normalizations, correlated shape variations when fitting together with backgrounds. stay tuned

<u>Broader context</u>: QCD in many regimes critical to extracting fundamental physics in the neutrino sector

cf. talk of L. Alvarez-Ruso

<u>Broader context</u>: QCD in many regimes critical to extracting fundamental physics in the neutrino sector

cf. talk of L. Alvarez-Ruso

<u>Broader context</u>: Sudakov logs ubiquitous, appear whenever kinematic invariants large compared to particle masses. Poor convergence, or even breakdown of fixed order perturbation theory

- massive boson production at proton collider

- dark matter annihilation
- $\alpha \log^2 \frac{Q^2}{m^2}$

 $\alpha_s \log^2 \frac{m_Z^2}{a_T^2}$

 $\alpha_2 \log^2 \frac{M_{\rm DM}^2}{m_{\rm W}^2} \quad M_{\rm DM} \sim {\rm TeV}$

 $Q \sim \text{GeV}$

 $q_T \sim \text{GeV}$

- Lepton-nucleon scattering

Effective theories differ in detail. For lepton-nucleon scattering: explicit lepton mass, bremsstrahlung energy cut, nuclear recoil and charge corrections

Summary: soft-collinear effective theory for lepton-nucleon scattering

- internal data tensions in electron-proton scattering indicate potential underestimated systematic
- developed general effective theory for radiative corrections to lepton hadron scattering
- control over large logarithms involving multiple scales
- further work underway to implement with precise experimental conditions, backgrounds and analysis strategy
- related applications: neutrino charged current scattering; e+e- \rightarrow hadrons for (g-2)_µ; parity-violating electron-proton scattering, connecting lattice amplitudes to experiment, ...

Experimental landscape: hydrogen

• no straightforward systematic explanation identified, but ~5 σ deviation results from summing many ~2 σ effects

Experimental landscape: historical e-p extractions

From Pohl et al., Ann.Rev.Nucl.Part.Sci. 63, 175