Nucleon matrix elements

Constantia Alexandrou University of Cyprus and The Cyprus Institute

Symposium on Effective Field Theories and Lattice Gauge Theory

Outline

Introduction

- Current status of simulations
- Computational cost

2

Nucleon observables

- Nucleon charges: g_A, g_s, g_T
- Nucleon σ-terms
- Electromagnetic form factors
- Parton Distributions
- Electric Dipole Moment

3 Conclusions

Quantum ChromoDynamics (QCD)

QCD-Gauge theory of the strong interaction Lagrangian: formulated in terms of quarks and gluons

$$\mathcal{L}_{OCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{t=u,d,s,c,b,t} \bar{\psi}_{t} \left(i \gamma^{\mu} D_{\mu} - m_{t} \right) \psi_{t}$$

$$D_{\mu} = \partial_{\mu} - ig \frac{\lambda^{a}}{2} A^{a}_{\mu}$$

Choice of fermion discretisation scheme e.g. Clover, Twisted Mass, Staggered, Overlap, Domain Wall Each has its advantages and disadvantages

Eventually,

- all discretization schemes must agree in the continuum limit a → 0
- observables extrapolated to the infinite volume limit $L \to \infty$

Why nucleon structure?

With simulations at the physical value of the pion mass there is a number of interesting questions we want to address:

- Can we reproduce known quantities?
- Can we reproduce the excited spectrum of the nucleon and its associated resonances?
- Can we resolve the long-standing issue of the spin content of the nucleon?
- Can we determine accurately enough the charge radius of the proton?
- Can we provide input for experimental searches for new physics?

Status of simulations

Size of the symbols according to the value of $m_{\pi}L$: smallest value $m_{\pi}L \sim 3$ and largest $m_{\pi}L \sim 6.7$.

In this talk: Show results from an analysis of $N_f = 2$ simulations with twisted mass Wilson fermions including a clover term at physical values of the light quark masses, (ETMC) A. Abdel-Rehim *et al.*, arXiv:1311.4522, arXiv:1507.05068

→ first results at physical point, (ETMC) A. Abdel-Rehim et al., Phys. Rev. D92 (2015), 114513 , arXiv:1507.04936

Observables at physical quark mass

For the analysis of the physical ensemble with a volume of $48^3 \times 96$, methods to reduce the statistical error are essential

Observables at physical quark mass

For the analysis of the physical ensemble with a volume of $48^3 \times 96$, methods to reduce the statistical error are essential

Observables at physical quark mass

For the analysis of the physical ensemble with a volume of $48^3 \times 96$, methods to reduce the statistical error are essential

The nucleon

- Cut-off effects small for these lattice spacings
- LO fit with $m_{\pi} < 375$ MeV does not include the physical point
- Determine lattice spacing using the $\mathcal{O}(p^3)$ result

Evaluation of matrix elements

Three-point functions:

To ensure ground state dominance need multiple sink-source time separations ranging from 0.9 fm to 1.5 fm

t₀/a

Extracting nucleon matrix elements

Plateau method:

$$R(t_{s}, t_{\text{ins}}, t_{0}) \xrightarrow{(t_{\text{ins}} - t_{0})\Delta \gg 1} \mathcal{M}[1 + \ldots e^{-\Delta(\mathbf{p})(t_{\text{ins}} - t_{0})} + \ldots e^{-\Delta(\mathbf{p}')(t_{s} - t_{\text{ins}})}]$$

- M the desired matrix element
- t_s, t_{ins}, t₀ the sink, insertion and source time-slices
- Δ(p) the energy gap with the first excited state
- Excited states contributions are different for different operators and pion mass → need to carefully check
- Need to include disconnected contributions unless shown to be negligible
- Summation method: Summing over t_{ins}:

$$\sum_{t_{ins}=t_0}^{t_s} R(t_s, t_{ins}, t_0) = \text{Const.} + \mathcal{M}[(t_s - t_0) + \mathcal{O}(e^{-\Delta(\mathbf{p})(t_s - t_0)}) + \mathcal{O}(e^{-\Delta(\mathbf{p}')(t_s - t_0)})].$$

Excited state contributions are suppressed by exponentials decaying with $t_s - t_0$, rather than $t_s - t_{ins}$ and/or $t_{ins} - t_0$ However, one needs to fit the slope rather than to a constant or take differences and then fit to a constant L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti, Nucl. Phys. B293, 420 (1987); S. Capitani *et al.*, arXiv:1205.0180

Fit keeping the first excited state, T. Bhattacharya et al., arXiv:1306.5435

All should yield the same answer in the end of the day!

Nucleon charges: g_A, g_s, g_T

- axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^{\mu}\gamma_5 \frac{\tau^a}{2}\psi(x)$
- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- \implies extract from ratio: $\langle N(\vec{p'}) \mathcal{O}_X N(\vec{p}) \rangle |_{q^2 = 0}$
 - Axial charge g_A Scalar charge g_S Tensor charge g_T

(i) isovector combination has no disconnect contributions; (ii) g_A well known experimentally, g_T to be measured at JLab

Nucleon charges: g_A, g_s, g_T

• $N_f = 2$ TMF with clover term a = 0.093(2) fm with $m_{\pi} = 133$ MeV; Connected part with ~ 6800 statistics First results with 1500 statistics, A. Abdel-Rehim et al. Phys.Rev. D92 (2015) no.11, 114513, Erratum: Phys.Rev. D93 (2016) no.3, 039904

Nucleon axial charge g_A

A previous study using $N_F = 2 + 1 + 1$ TM with $m_{\pi} = 373$ MeV and a = 0.08 fm

Vary source- sink separation:

 g_A unaffected, $\langle x \rangle_{u-d}$ 10% lower \implies Excited contributions are operator dependent

S. Dinter, C.A., M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076

Nucleon from LQCD

Nucleon Axial-vector charge g_A

Comparison of lattice results

Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_P(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally, & ii) no quark loop contributions

- g_A at the physical point using ~ 6800 at sink-source time separation 1.3 fm slightly below the physical value → important to increase sink-source time separation at constant statistical error but also volume effects should also be checked - compute g_A on a 64³ × 128 volume at the same light quark masses
- many results from other collaborations, e.g.
 - N_f = 2 + 1 Clover, J. R. Green et al., arXiv:1209.1687
 - Nf = 2 Clover, R.Hosley et al., arXiv:1302.2233
 - N_f = 2 Clover, S. Capitani *et al.* arXiv:1205.0180
 - Nf = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668
 - $N_{f}^{\prime} = 2 + 1 + 1$ Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435

Nucleon tensor g_T, g_S

- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$

• Experimental value of $g_T^{u-d} \sim 0.64_{-0.13}^{+0.30}$ from global analysis of HERMES, COMPASS and Belle e^+e^- data, M. Anselmino *et al.* (2013). New analysis of COMPASS and Belle data : $g_T^{u-d} = 0.81(44)$, M. R. A. Courtoy, A. Bacchettad, M. Guagnellia, arXiv: 1503.03495

• g_s^{u-d} is very noisy. Currently $g_s^{u-d} \sim 1 \pm 0.5$

Nucleon charges: $g_{A}^{q}, g_{T}^{q}, g_{S}^{q}$

Include disconnected contributions, \sim 202, 000 statistics

- Disconnected contribution to g_{A}^{u+d} cannot be neglected, ~ 10% of connected ۰
- Disconnected contribution to g_{τ}^{u+d} negligible ۰
- Disconnected contribution to g_{s}^{u+d} are \sim 25% of the connected. ۰

The quark content of the nucleon or nucleon σ -terms

- $\sigma_f \equiv m_f \langle N | \bar{q}_t q_f | N \rangle$: measures the explicit breaking of chiral symmetry Largest uncertainty in interpreting experiments for dark matter searches - Higgs-nucleon coupling depends on σ , J. Ellis, K. Olive, C. Savage, arXiv:0801.3656
- In lattice QCD:

i) Feynman-Hellmann theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$

Similarly $\sigma_s = m_s \frac{\partial m_N}{\partial m_s}$

ii) Direct computation of the scalar matrix element, A. Abdel-Rehim et al. arXiv:1601.3656

The quark content of the nucleon or nucleon σ -terms

- $\sigma_f \equiv m_f \langle N | \bar{q}_t q_t | N \rangle$: measures the explicit breaking of chiral symmetry Largest uncertainty in interpreting experiments for dark matter searches - Higgs-nucleon coupling depends on σ , J. Ellis, K. Olive, C. Savage, arXiv:0801.3656
- In lattice QCD: i) Feynman-Hellmann theorem: $\sigma_l = m_l \frac{\partial m_N}{\partial m_l}$

Similarly $\sigma_s = m_s \frac{\partial m_N}{\partial m_s}$

ii) Direct computation of the scalar matrix element, A. Abdel-Rehim et al. arXiv:1601.3656

Electromagnetic form factors

$$\langle N(p',s')|j^{\mu}(0)|N(p,s)\rangle = \bar{u}_N(p',s') \left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right] u_N(p,s)$$

Proton radius extracted from muonic hydrogen is 7.7 σ different from the one extracted from electron scattering, R. Pohl et al., Nature 466 (2010) 213

Muonic measurement is ten times more accurate

Dirac and Pauli radii

Dipole fits: $\frac{G_0}{(1+Q^2/M^2)^2} \Rightarrow \langle r_i^2 \rangle = -\frac{6}{F_i} \frac{dF_i}{dQ^2}|_{Q^2=0} = \frac{12}{M_i^2}$ Need better accuracy at the physical point

Using results from summation method, J. M. Green et al., 1404.4029

Position methods

- Avoid model dependence-fits
- Application to Sachs form factors \rightarrow nucleon isovector magnetic moment $G_M^{iso}(0)$
- Isovector rms charge radius of the nucleon
- Neutron electric dipole moment

As a first step we calculated $G_M(0)$ (equivalently $F_2(0)$) at $m_{\pi} = 373$ MeV.

C.A., G. Koutsou, K. Ottnad, M. Petschlies, PoS(Lattice2014), 144

Magnetic moment $G_M^{iso}(0)$

- Value for G^{iso}_M = 4.45(15)_{stat} larger than result from dipole fit 3.99(9)_{stat}
- Closer to exp. value (4.71)

 $G_{M}^{\rm iso}(0)$ from $\mathcal{O}(4700)$ gauge confs of B55; $t_{\rm s}/a = 14$

- We use an ETMC $48^3 \times 96$, $N_f = 2$ ensemble with **physical pion mass**
- Data shown in plot are for O(1400) confs
- $t_s/a = 14$ compatible with experiment!
- Unfortunately errors are still not small enough to distinguish the two experimental values

Strange Electromagnetic form factors

New methods for disconnected fermion loops: hierarchical probing, A. Stathopoulos, J. Laeuchli, K. Orginos, arXiv:1302.4018

 $N_f=2+1$ clover fermions, $m_\pi\sim 320$ MeV, J. Green et al., Phys.Rev. D92 (2015) 3, 031501, arXiv: 1505.01803

Sampling of the fermion propagator using site colouring schemes

Moments of Generalized Parton Distributions

Factorization leads to matrix elements of local operators:

vector operator

$$\mathcal{O}_{V^{a}}^{\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\gamma^{\{\mu_{1}i\stackrel{\leftrightarrow}{D}\mu_{2}}\cdots i\stackrel{\leftrightarrow}{D}^{\mu_{n}\}}\frac{\tau^{a}}{2}\psi(x)$$

axial-vector operator

$$\mathcal{O}_{\mathcal{A}^{a}}^{\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\gamma^{\{\mu_{1}i\stackrel{\leftrightarrow}{D}\mu_{2}}\dots i\stackrel{\leftrightarrow}{D}^{\mu_{n}\}}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$$

tensor operator

$$\mathcal{O}_{T^a}^{\mu_1\cdots\mu_n} = \bar{\psi}(x)\sigma^{\{\mu_1,\mu_2\,i}\stackrel{\leftrightarrow}{D}{}^{\mu_3}\ldots i\stackrel{\leftrightarrow}{D}{}^{\mu_n\}}\frac{\tau^a}{2}\psi(x)$$

Special cases:

- For Q² = 0 → parton distribution functions one-derivative → first moments e.g. average momentum fraction ⟨x⟩ Generalized form factor decomposition:

$$\langle N(p',s')|\mathcal{O}_{V3}^{\mu\nu}|N(p,s)\rangle = \bar{u}_N(p',s') \left[A_{20}(q^2)\gamma^{\{\mu}P^{\nu\}} + B_{20}(q^2)\frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m} + C_{20}(q^2)\frac{q^{\{\mu}q^{\nu\}}}{m} \right] \frac{1}{2}u_N(p,s)$$

Nucleon spin
$$J^q = \frac{1}{2} \left[A_{20}(0) + B_{20}(0) \right]$$
 and $\langle x \rangle_q = A_{20}(0)$

Momentum fraction and the nucleon spin

- (x)_{u-d} approach physical value for bigger source-sink separations → need an equivalent high statistics study e.g. t_s ~ 1.5 fm we used ~ 48000 statistics
- Can provide a prediction for \langle x \rangle su-\delta d

Experimental value:

• $\langle x \rangle_{u-d}$ from S. Alekhin *et al.* arXiv:1202.2281

Momentum fraction and the nucleon spin

- (x)_{u-d} approach physical value for bigger source-sink separations → need an equivalent high statistics study e.g. t_s ~ 1.5 fm we used ~ 48000 statistics
- Can provide a prediction for $\langle x \rangle_{\delta u \delta d}$

Experimental value:

• $\langle x \rangle_{\mu-d}$ from S. Alekhin *et al.* arXiv:1202.2281

Nucleon gluon moment

- $N_f = 2 + 1 + 1$ twisted mass, *a* = 0.082 fm, m_{π} = 373 MeV, \sim 34,470 statistics
- $N_f = 2$ twisted mass plus clover, a = 0.093 fm, $m_{\pi} = 132$ MeV, $\sim 155,800$ statistics

Matrix element of the gluon operator O_{μν} = -Tr[G_{μρ}G_{νρ}]

• We consider $\langle N|O_{44} - \frac{1}{3}O_{jj}|N\rangle$ at zero momentum, which yields directly $\langle x \rangle_g$

- HYP-smearing to reduce noise
- Perturbative renormalization

Nucleon gluon moment-Renormalization

Mixing with $\langle x \rangle_{u+d} \Longrightarrow$ Perturbation theory - M. Constantinou and H. Panagopoulos

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.)

Nucleon from LQCD

Nucleon gluon moment-Renormalization

Mixing with $\langle x \rangle_{u+d} \Longrightarrow$ Perturbation theory - M. Constantinou and H. Panagopoulos

$$\times Z_{qq}: \quad \Lambda_{qq} = \langle q | \mathcal{O}_q | q \rangle$$

$$Z_{gg} = 1 + \frac{g^2}{16\pi^2} \left(1.0574 \, N_f + \frac{-13.5627}{N_c} - \frac{2 \, N_f}{3} \log(a^2 \bar{\mu}^2) \right)$$

 $\times Z_{qg}: \quad \Lambda_{qg} = \langle g | \mathcal{O}_q | g \rangle$

$$Z_{gq} = 0 + \frac{g^2 C_f}{16\pi^2} \left(0.8114 + 0.4434 c_{SW} - 0.2074 c_{SW}^2 + \frac{4}{3} \log(a^2 \bar{\mu}^2) \right)$$

$$\begin{split} \bullet Z_{gq}: \quad \Lambda_{gq} &= \langle q | \mathcal{O}_g | q \rangle \\ Z_{qq} &= 1 + \frac{g^2}{16\pi^2} \left(-1.8557 + 2.9582 \, c_{SW} + 0.3984 \, c_{SW}^2 - \frac{8}{3} \log(a^2 \bar{\mu}^2) \right) \end{split}$$

$$\begin{aligned} \bullet Z_{gg} : \quad \Lambda_{gg} &= \langle g | \mathcal{O}_g | g \rangle \\ Z_{qg} &= 0 + \frac{g^2 N_f}{16\pi^2} \left(0.2164 + 0.4511 \, c_{SW} + 1.4917 \, c_{SW}^2 - \frac{4}{3} \log(a^2 \bar{\mu}^2) \right) \end{aligned}$$

• Preliminary value: $\langle x \rangle_g = 0.282(39)$ for the physical ensemble in $\overline{\text{MS}}$ at $\mu = 2 \text{ GeV}$

• Momentum conservation: $\sum_{q} \langle x \rangle_{q} + \langle x \rangle_{g} = \langle x \rangle_{u+d}^{Cl} + \langle x \rangle_{u+d+s}^{Dl} + \langle x \rangle_{g} = 0.929(64)$

Nucleon spin?

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{G}$$

 $J^{q} = A_{20}^{q}(0) + B_{20}^{q}(0) \text{ and } \Delta\Sigma^{q} = g_{A}^{q}$

Disconnected contribution using $\mathcal{O}(150,000)$ statistics for $m_{\pi}=373$ MeV and for $m_{\pi}=133$ MeV

Nucleon spin?

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{c}$$

 $J^{q} = A_{20}^{q}(0) + B_{20}^{q}(0) \text{ and } \Delta\Sigma^{q} = g_{A}^{q}$

Disconnected contribution using $\mathcal{O}(150,000)$ statistics for $m_{\pi}=373$ MeV and for $m_{\pi}=133$ MeV

• $\Delta \Sigma^{u,d}$ consistent with experimental values

Direct evaluation of parton distribution functions - an exploratory study

$$\tilde{a}_n(x,\Lambda,P_3)=\int_{-\infty}^{+\infty}dx\,x^{n-1}\,\tilde{q}(x,\Lambda,P_3)\rangle,$$

$$\tilde{q}(x,\Lambda,P_3) = \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-izxP_3} \underbrace{\langle P | \bar{\psi}(z,0) \rangle \gamma_3 W(z) \psi(0,0) | P \rangle}_{h(P_3,z) \rightarrow canbecomputedinLQCD}$$

is the quasi-distribution defined by X. Ji Phys.Rev.Lett. 110 (2013) 262002, arXiv:1305.1539 Exploratory calculations:

- Huey-Wen Lin *et al.* Phys. Rev. D91 (2015) 054510, Clover on N_f = 2 + 1 + 1 HISQ, m_π = 310MeV and Jiunn-Wei Chen *et al.*, arXiv:1603.06664
- C.A., K. Cichy, E. G. Ramos, V. Drach, K. Hadjiyiannakou, K. Jansen, F. Steffens, C. Wiese, Phys.Rev. D92 (2015) 014502

- We used the $N_f = 2 + 1 + 1$ TMF ensemble with $m_{\pi} = 373$ MeV
- Perform HYP-smearing on the gauge links
- Use the stochastic all-to-all propagator in the three-point function
- Extract quasi-distribution for $\frac{2\pi}{L}$, $\frac{4\pi}{L}$, $\frac{6\pi}{L}$

Comments

Our starting point is

$$q(x,\mu) = \tilde{q}(x,\Lambda,P_3) - \frac{\alpha_s}{2\pi} \tilde{q}(x,\Lambda,P_3) \delta Z_F^{(1)}\left(\frac{\mu}{P_3},\frac{\Lambda}{P_3}\right) - \frac{\alpha_s}{2\pi} \int_{-1}^1 \frac{dy}{y} Z^{(1)}\left(\frac{x}{y},\frac{\mu}{P_3},\frac{\Lambda}{P_3}\right) \tilde{q}(y,\Lambda,P_3) + \mathcal{O}(\alpha_s^2)$$

- The calculation of the leading UV divergences in q̃ in PT are done keeping P₃ fixed while taking Λ → ∞ (in contrast to first taking P₃ → ∞ for the renormalization of q)
- We still do not have a renormalization procedure → identify the UV regulator as µ for q and as ∧ for the case of the quasi-distribution.
- The dependence on the UV regulator Λ will be translated, in the end, into a renormalization scale μ after proper renormalization
- Single pole terms cancel when combining the vertex and wave function corrections, and double poles are
 reduced to a single pole that are taken care via the principal value prescription

Preliminary results

Work in progress for the renormalization

Neutron Electric Dipole Moment (nEDM)

Probe for beyond the standard model physics

Current best upper limit : $|d_n| < 2.9 \times 10^{-26}$ e cm (90% C.L. from ILL Grenoble)

Lattice determination of Neutron Electric Dipole Moment (nEDM)

Add θ -term to the Langragian \rightarrow complex action

- Measure neutron energy in an external electric field
- Simulate with imaginary θ, see e.g. QCDSF, Guo et al. 2015
- Assume θ is small and expand to first order: Compute the CP-violating form factor $F_3(0) \rightarrow$

 $|d_n| = \lim_{q^2 \to 0} \frac{F_3(q^2)}{2m_N}$

But $F_3(0)$ cannot be determined directly \rightarrow use:

- Fit the q²-dependence
- Use space methods to extract it

Results on nEDM

• $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV

Use gradient flow to define the topological charge

Computation at the physical point under study

Conclusions

Future Perspectives

- Confirm g_A , $\langle x \rangle_{u-d}$, etc, at the physical point using $N_f = 2$ at a larger volume and with $N_f = 2 + 1 + 1$
- Provide predictions for g_s, g_T, tensor moment, sigma-terms, etc.
- Compute hadron GPDs using new techniques
- Increase statistics on the proton radius using position methods
- Compute gluonic observables
- Nucleon excited states and resonance properties
- ...

European Twisted Mass Collaboration

European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:

A. Abdel-Rehim, S. Bacchio, K. Cichy, M. Constantinou, V. Drach, E. Garcia Ramos, J. Finkenrath, K. Hadjiyiannakou, K.Jansen, Ch. Kallidonis, G. Koutsou, K. Ottnad, M. Petschlies, F. Steffens, A. Vaquero, C. Wiese