Determination of α_s from the QCD static energy

Antonio Vairo

Technische Universität München

Bibliography

- (1) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination of α_s from the QCD static energy: an update
 Phys. Rev. D90 (2014) 7, 074038 arXiv:1407.8437
- (2) X. Garcia i Tormo

Review on the determination of α_s from the QCD static energy Mod. Phys. Lett. A28 (2013) 1330028 arXiv:1307.2238

- (3) A. Bazakov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo Determination of α_s from the QCD static energy
 Phys. Rev. D86 (2012) 114031 arXiv:1205.6155
- (4) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo *Precision determination of* $r_0 \Lambda_{\overline{MS}}$ *from the QCD static energy* Phys. Rev. Lett. 105 (2010) 212001 arXiv:1006.2066
- N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo *The QCD static energy at NNNLL* Phys. Rev. D80 (2009) 034016 arXiv:0906.1390
- (6) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo *The logarithmic contribution to the QCD static energy at N⁴LO* Phys. Lett. B647 (2007) 185 arXiv:hep-ph/0610143

$\alpha_{\rm s}$ in 2014

Status of α_s

	$\alpha_s(M_Z^2)$			
Alekhin [2001]	0.1143 ± 0.013	DIS [4]		
BBG [2004]	$0.1134 \begin{array}{c} +0.0019 \\ -0.0021 \end{array}$	valence analysis, NNLO [5,6]		
GRS	0.112	valence analysis, NNLO [7]		
ABKM	0.1135 ± 0.0014	HQ: FFNS $N_f = 3$ [8]		
JR14	0.1136 ± 0.0004	dynamical approach [9]		
JR14	0.1162 ± 0.0006	including NLO-jets [9]		
MSTW	0.1171 ± 0.0014	(2009) [10]		
Thorne	0.1136	[DIS+DY, HT*] (2014) [11]		
$ABM11_J$	$0.1134 - 0.1149 \pm 0.0012$	Tevatron jets (NLO) incl. [12]		
ABM13	0.1133 ± 0.0011	[13]		
ABM13	0.1132 ± 0.0011	(without jets) [13]		
CTEQ	0.11590.1162	[14]		
CTEQ	0.1140	(without jets) [14]		
NN21	$0.1174 \pm 0.0006 \pm 0.0001$	[15]		
Gehrmann et al.	0.1131 + 0.0028 - 0.0022	e^+e^- thrust [16]		
Abbate et al.	0.1140 ± 0.0015	e^+e^- thrust [17]		
CMS	0.1151 ± 0.0033	tī [18]		
NLO Jets ATLAS	$0.111 \begin{array}{c} +0.0017 \\ -0.0007 \end{array}$	[19]		
NLO Jets CMS	0.1148 ± 0.0055	[19]		
BBG [2004]	$0.1141 \stackrel{+0.0020}{_{-0.0022}}$	valence analysis, N ³ LO [5,6]		
3-jet rate	0.1175 ± 0.0025	Dissertori et al. 2009 [20]		
Z-decay rate	0.1189 ± 0.0026	BCK 2008/12 (N ³ LO) [21, 22]		
τ -decay rate	0.1212 ± 0.0019	BCK 2008 (N ³ LO) [21, 22]		
τ -decay rate	0.1204 ± 0.0016	Pich 2011 [1]		
τ -decay rate	0.325 ± 0.018 (at $m_{ au}$)	FOTP: [23]		
τ -decay rate	0.374 ± 0.025 (at m_{τ})	CIPT: [23]		
Lattice	0.1205 ± 0.0010	PACS-CS 2009 (2+1 fl.) [24]		
Lattice	0.1184 ± 0.0006	HPQCD 2010 [25]		
Lattice	0.1200 ± 0.0014	ETMC 2012 (2+1+1 fl.) [26]		
Lattice	0.1156 ± 0.0022	Bazavov et al. (2+1 fl.) [27]		
Lattice	$0.1130 \pm 0.0010(stat)$	RBC-UKQCD (preliminary, 2014) [28]		

• Moch et al arXiv:1405.4781

PDG average

Current uncertainties of α_s are not fully reflected in the PDG average.

Static energy

$$E_0(r) = \lim_{T \to \infty} \frac{i}{T} \ln \langle \square \rangle; \qquad \square = \exp\left\{ ig \oint dz^{\mu} A_{\mu} \right\}$$

Perturbation theory describes $E_0(r)$ in the short range ($r\Lambda \ll 1$, $\alpha_s(1/r) < 1$):

$$E_0(r) = \Lambda_s - \frac{C_F \alpha_s}{r} (1 + \#\alpha_s + \#\alpha_s^2 + \#\alpha_s^3 + \#\alpha_s^3 \ln \alpha_s + \#\alpha_s^4 \ln^2 \alpha_s + \#\alpha_s^4 \ln \alpha_s + \dots)$$

- E₀(r) is known at three loops.
 Anzai Kiyo Sumino PRL 104 (2010) 112003
 A.Smirnov V.Smirnov Steinhauser PRL 104 (2010) 112002
 - $\ln \alpha_s$ signals the cancellation of contributions coming from different energy scales:

$$\ln \alpha_{\rm s} = \ln \frac{\mu}{1/r} + \ln \frac{\alpha_{\rm s}/r}{\mu}$$

o Brambilla Pineda Soto Vairo PRD 60 (1999) 091502

Energy scales

In the short range the static Wilson loop is characterized by a hierarchy of energy scales:

$$1/r \gg V_o - V_s \gg \Lambda;$$
 $V_s \approx -C_F \frac{\alpha_s}{r}, \quad V_o \approx \frac{1}{2N} \frac{\alpha_s}{r}$

Effective Field Theories

It is convenient to factorize the contributions from the different scales with EFTs:

• Brambilla Pineda Soto Vairo NPB 566 (2000) 275

The μ dependence cancels between $V_s \sim \ln r\mu, \ln^2 r\mu, ...$ ultrasoft contribution $\sim \ln(V_o - V_s)/\mu, \ln^2(V_o - V_s)/\mu, ... \ln r\mu, \ln^2 r\mu, ...$

Static singlet potential and energy at N³LL

$$V_{s}(r,\mu) = V_{s}(r,1/r) - \frac{C_{F}C_{A}^{3}}{6\beta_{0}} \frac{\alpha_{s}^{3}(1/r)}{r} \left\{ \left(1 + \frac{3}{4} \frac{\alpha_{s}(1/r)}{\pi} a_{1}\right) \ln \frac{\alpha_{s}(1/r)}{\alpha_{s}(\mu)} \\ \left(\frac{\beta_{1}}{4\beta_{0}} - 6c\right) \left[\frac{\alpha_{s}(\mu)}{\pi} - \frac{\alpha_{s}(1/r)}{\pi}\right] \right\}$$

Summed to the ultrasoft contribution at two loops, it provides the static energy at N^3LL .

Mass renormalon

The perturbative expansion of V_s is affected by a renormalon ambiguity of order Λ . This ambiguity does not affect the slope of the potential (and the extraction of α_s).

It may be eliminated from the perturbative series

- either by subtracting a (constant) series in α_s to V_s and reabsorb it in a redefinition of the residual mass,
- or by considering the force:

$$F(r, \alpha_{\rm s}(\nu)) = \frac{d}{dr} E_0(r, \alpha_{\rm s}(\nu))$$

- The force $F(r, \alpha_s(1/r))$ could be directly compared with lattice,
- or integrated and compared with the static energy

$$E_0(r) = \int_{r_*}^r dr' \, F(r', \alpha_s(1/r'))$$

up to an irrelevant constant fixed by the overall normalization of the lattice data. Note that there are no $\ln \nu r$ ($\nu =$ renormalization scale).

Analysis

Lattice

We use 2+1-flavor lattice QCD obtained from tree-level improved gauge action and Highly-Improved Staggered Quark (HISQ) action by the HotQCD collaboration. m_s was fixed to its physical value, while $m_l = m_s/20$.

This corresponds to a pion mass of about 160 MeV in the continuum limit.

β	7.373	7.596	7.825
r_1/a	5.172(34)	6.336(56)	7.690(58)
Volume	$48^3 \times 64$	64^{4}	64^{4}

The largest gauge coupling, $\beta = 7.825$, corresponds to lattice spacings of a = 0.041 fm. • Bazakov et al PRD 90 (2014) 094503

The lattice spacing was fixed using the r_1 scale defined as $r^2 \frac{dE_0(r)}{dr}\Big|_{r=r_1} = 1.0$; $r_1 = 0.3106 \pm 0.0017$ fm from the pion decay constant f_{π} .

• Bazakov et al PoS LATTICE 2010 (2010) 074

Procedure

We use data for each value of the lattice spacing separately, and at the end perform an average of the different obtained values of α_s with the following procedure.

- Perform fits to the lattice data for the static energy $E_0(r)$ at different orders of perturbative accuracy. The parameter of the fits is $\Lambda_{\overline{MS}}$.
- Repeat the above fits for each of the following distance ranges: $r < 0.75r_1$, $r < 0.7r_1$, $r < 0.65r_1$, $r < 0.6r_1$, $r < 0.55r_1$, $r < 0.5r_1$, and $r < 0.45r_1$.
- Use ranges where the reduced χ^2 either decreases or does not increase by more than one unit when increasing the perturbative order, or is smaller than 1.
- To estimate the perturbative uncertainty of the result, repeat the fits
 - by varying the scale in the perturbative expansion, from $\nu=1/r$ to $\nu=\sqrt{2}/r$ and $\nu=1/(\sqrt{2}r),$
 - by adding/subtracting a term $\pm (C_F/r^2)\alpha_s^{n+2}$ to the expression at n loops. Take the largest uncertainty.

Data ranges

χ^{2} /d.o.f. for $\beta = 7.825$

Fits for $r < 0.6r_1$ are acceptable. In the final result we will use only fits for $r < 0.5r_1$. The fitting curve has been normalized on the 7th, 8th and 9th lattice point respectively.

 $a\Lambda_{\overline{\mathrm{MS}}}$ at different orders of perturbative accuracy for $\beta = 7.825$

$r_1 \Lambda_{\overline{\mathrm{MS}}}$ at three-loop accuracy

The band shows the determination of 2012.

Statistical error vs perturbative error

The statistical error is estimated by taking values of $\Lambda_{\overline{MS}}$ at one χ^2 unit above minimum.

Short-distance points vs long-distance points

The band shows the determination of 2012.

Looking for condensates

By repeating the fits adding a monomial term proportional to r^3 and r^2 , which could be associated with gluon and quark local condensates, and also a term proportional to r, we do not find evidence for a significant non-perturbative term at short distances and the value of $\Lambda_{\overline{\rm MS}}$ remains unchanged.

Results

$\Lambda_{\overline{\mathrm{MS}}}$

Results at three-loop plus leading-ultrasoft resummation for the $r < 0.5r_1$ fit range. The final result is the weighted average of different β s with linearly added errors.

	$a\Lambda_{\overline{\mathrm{MS}}}; N_{\mathrm{ref}} = 7$	$a\Lambda_{\overline{\mathrm{MS}}}; N_{\mathrm{ref}} = 8$	$a\Lambda_{\overline{\mathrm{MS}}}; N_{\mathrm{ref}} = 9$	$a\Lambda_{\overline{\mathrm{MS}}}$; range spanned	$r_1\Lambda_{\overline{\mathrm{MS}}}$; range spanned
$\beta = 7.373$	$0.0957\substack{+0.0046\\-0.0028}$	$0.0957\substack{+0.0046\\-0.0028}$	$0.0957^{+0.0046}_{-0.0028}$	$0.0957^{+0.0046}_{-0.0028}$	$0.4949^{+0.0240}_{-0.0144} \pm 0.0086 \pm 0.0025$
	± 0.0017	± 0.0017	± 0.0017	± 0.0017	$= 0.4949_{-0.0170}^{+0.0256}$
$\beta = 7.596$	$0.0781^{+0.0046}_{-0.0029}$	$0.0784^{+0.0043}_{-0.0027}$	$0.0785^{+0.0046}_{-0.0029}$	$0.0783^{+0.0048}_{-0.0031}$	$0.4961^{+0.0303}_{-0.0197}{}^{+0.0066}_{-0.0091} \pm 0.0044$
	± 0.0007	± 0.0010	± 0.0007	± 0.0010	$= 0.4961^{+0.0313}_{-0.0211}$
$\beta = 7.825$	$0.0644_{-0.0019}^{+0.0032}$	$0.0642^{+0.0033}_{-0.0020}$	$0.0643^{+0.0032}_{-0.0020}$	$0.0643^{+0.0033}_{-0.0021}$	$0.4944^{+0.0256}_{-0.0159} \pm 0.0065 \pm 0.0037$
	± 0.0006	± 0.0008	± 0.0008	± 0.0008	$= 0.4944_{-0.0175}^{+0.0267}$
Average					$r_1 \Lambda_{\overline{\rm MS}} = 0.495^{+0.028}_{-0.018}$

 $r_1 \Lambda_{\overline{\text{MS}}} = 0.495^{+0.028}_{-0.018}$ which converts to $\Lambda_{\overline{\text{MS}}} = 315^{+18}_{-12} \text{ MeV}$

Static energy vs lattice data

Note the agreement between perturbation theory and lattice data up to about 0.2 fm.

Static energy at different perturbative orders vs lattice data

Lattice data with β from 6.664 to 7.825 are displayed.

The red error bars correspond to the errors of the lattice data (include normalization).

 $lpha_{\mathbf{s}}$

 $\begin{aligned} &\alpha_{\rm s}(1.5~{\rm GeV},n_f=3)=0.336^{+0.012}_{-0.008}\\ &\text{which corresponds to}\\ &\alpha_{\rm s}(M_Z,n_f=5)=0.1166^{+0.0012}_{-0.0008} \end{aligned}$

from four-loop running, $m_c = 1.6$ GeV and $m_b = 4.7$ GeV.

Comparison with other determinations

For τ decays (ALEPH + OPAL) see also $\alpha_s(M_Z, n_f = 5) = 0.1165 \pm 0.0012$ (FOPT), • Boito et al arXiv:1410.3528

$$\alpha_{\rm s}(M_Z, n_f = 5) = 0.1185 \pm 0.0015$$
 (CIPT)