

Challenging Low-Energy QCD: New Insight into the Light-meson Spectrum and Low-Energy Processes with Pions

New experimental results with COMPASS at CERN

Stephan Paul TU München

Brief Overview

- Polarizabilities
 - Analogies with atoms
 - Pion polarisability
- Radiative excitations
- Spectroscopy in strong interaction
 - Introduction
 - A new meson nobody has asked for
- New insights into production/decay dynamics
- Conclusions

- Pion is lightest composite system
- Properties:
 - $M_{\pi^+} = 139.57 \text{ MeV/c}^2$
 - $M_{\pi^0} = 134.97 \text{ MeV/c}^2$
 - Spin S = 0
 - *Lifetime* $\tau = 2.603 \cdot 10^{-8} \text{ s}$

Flightpath $\Delta x = 10.6$ km (at p = 190 GeV/c)

$$-\sqrt{\langle r^2 \rangle} = 0.672 \pm 0.008 \text{ fm} = (0.672 \pm 0.008) \cdot 10^{-15} \text{ m}$$

Question: what is it's macroscopic structure ?

Refractive index n

- Macroscopically: dielectric constant $\tilde{\varepsilon} = \varepsilon_1 + i\varepsilon_2 = n + i\kappa$
- Microscopically:
 - Light wave polarizes atoms \rightarrow induced dipole moment: $\vec{P} = \alpha \cdot \vec{E}$ α : electric polarisability
 - Relaxation \Rightarrow dipole radiation (delayed phase shift) superimposing incoming field $\Rightarrow c_{matter} = \frac{c_{Vac}}{n}$ $\alpha(\omega) = \frac{n(\omega) - 1}{2\pi} \text{\AA}^3 \approx \frac{9}{2} a_{Bohr}^3 \qquad \alpha_{He} = 9.3 \text{\AA}^3$
 - Strength is frequency dependent (dispersion)

- "stable" object with smallest "Bohr" radius
- Polarizability
 - strong interaction
 - electromagnetic

$$: \frac{\alpha_{em}}{\alpha_{strong}} = \frac{\frac{1}{137}}{0.7} \approx 0.01$$

 $\Delta E(H_{1S} \rightarrow H_{2S}) \approx 10 \text{ eV}$

 $\Delta E(\pi \rightarrow \rho) \approx 600 \text{ MeV}$

Indicator for stiffness of system

$$\frac{\alpha_{\pi}}{\langle r_{\pi}^{em} \rangle^{3}} (\pi) \approx \frac{1}{100} \frac{\alpha_{atom}}{a_{Bohr}^{3}} (atom) \cdot (q_{eff}^{\pi})^{2} << \frac{\alpha_{atom}}{a_{Bohr}^{3}} (atom) < r_{\pi}^{em} \rangle^{2} \approx 0.45 \pm 0.01 fm^{2}$$

$$\chi PT: \quad \alpha_{\pi} = 2.85 \pm 0.5 \cdot 10^{-4} \, fm^3$$

Theory: *Others*: $\alpha_{\pi} = 4 - 10 \cdot 10^{-4} \, fm^3$

- Atomic physics: deflection of an atom in a laser field
 - $\vec{F} = \alpha \cdot \vec{E} \cdot \nabla E$
 - Need strong fields and strong gradients (laser cavity) $E = 10^{6} V / cm$ $\nabla E = 10^{11} V / cm^{2}$
- Particle physics: scatter high energy π from photon source
 - Photon source: high Z nucleus
 - High gradients: relativistic amplification

 $E = 10^5 V / fm$

Charged particle is deflected in field (Born term)

LHC

COMPASS am CERN

COmmon Muon and Proton Apparatus for Structure and Spectrosco

OMPA

p up to 400 GeV
Secondary hadrons (π, K, ...): 2·10⁷/s
tertiary μ (polarised): 4·10⁷/s

The COMPASS Experiment

COMPASS Measurement

- So far: excitations far below resonance region (elastic scattering)
- Higher energies: photon-scattering inelastic
 - Atoms: electronic excitations
 - Hadrons: resonance production
- Various multipole excitations possible
 - Determine angular distribution in de-excitation process
- For Primakoff reactions: wide range of photon energies
 - Analysis of final state determines reaction type and excitation energy

- Study resonances with electromagnetic probe
 - similar to photo-production of Δ^+ off protons
 - radiative transitions of charmonia
- Competition by strong interaction (with same final state)
 - Photon: S = 1 and $H = \pm 1$

Helicity conservation \rightarrow Spin alignment of resonance X^{-}

Diffraction: need angular momentum for Spin alignment

Suppressed in forward production

Identify photo-production via spin alignment M = 1 at low $t' < 10^{-3} \ GeV^2/c^2$ $\sigma_{Photo} \approx e^{-b_{photo}t'}$ $\sigma_{diffract} \approx t'^M \cdot e^{-b_{diff}t'}$ $b_{photo} >> b_{diffract}$ $\rightarrow M = 1$ is suppressed in diffraction

EM-Transitions for Mesons

Testing Dynamics

- Consider non-resonant inelastic $\gamma \pi^- \rightarrow \pi^+ \pi^- \pi^-$ scattering (t' < 10⁻³ (GeV/c)²)
 - Low masses: no resonances, just pion scattering
 - → tree diagrams from ChPT predictions

- Fit ChPT Amplitude (as single partial wave) to 5-dimensional phase space
 Describe all waves with m = 1 for low masses
 - ChPT valid (at least) 0.5 GeV/ $c^2 < m_{3\tau} < 0.7$ GeV/ c^2
 - Higher masses: Isobaric decays

Testing Dynamics

• Next Step: Measure effect of loops in $\gamma \pi^- \rightarrow \pi^0 \pi^0 \pi^-$

Klempt Zaitsev Phys Rep 454 (2007) 1 Exzellenzcluster Universe

Constituent Quarks and Mesons

C. Amsler et al., Phys. Rept. 389, 61 (2004)

More Surprising States?

taken from Mike pendlebury

The Diffraction Process

generic process $5 \cdot 10^7 \text{ evts}$ π ×10⁶ $\pi^{-}p \rightarrow \pi^{-}\pi^{-}\pi^{+}p$ (COMPASS 2008) Number of Events / (50 MeV) π^+ $t' = t - t_{\min} \approx t$ P 0.5 exclusive reaction p0.4 0.3 what we are after 0.2 0.1 π π X^{-} π^{-} π^+ 175 180 185 190 195 ₽ Calculated Beam Energy (GeV)

p

205

200

Motivation for Isobar Model

Partial wave analysis

inspired by M. Pennington

Art taken from Urs Wehrli: "Kunst aufgeräumt"

Exzellenzcluster Universe

What is PWA ?

Describe population in 5-dimensional phase space in $\pi\pi\pi$ by model

- Define a set of quantum numbers J^{PC}
- Define a set of possible decay channels for each J^{PC}

(X⁻ \rightarrow isobar + π ; isobar $\rightarrow \pi\pi$) : wave (88 waves used)

- each such "wave" has a pre-determined population in phase space
- each wave may have alignment of J described by quantum number M
- For each bin of 20 MeV/c² mass of $\pi\pi\pi\pi$: determine which coherent combination of waves fits distribution best
- Obtain spin-density matrix
- Describe spin density matrix (submatrix) by model containing resonances and non-resonant contributions connecting all mass bins
 - Determine resonance parameters

2

step

t dependence of mass distributions

low t

Model for Spin Density Matrix

Describe the results obtained independently in different mass bins by a model

- select physics contributions
- fit to spin density matrix (not only to simple mass spectra)

e 🖉 🌉

Mass dependent fits $a_1(1420)$

$1^{++}0^{+}f_0(980)\pi P$

NEW

NEW

Correlation: $m_{2\pi}(0^{++})$ vs $m_{3\pi}(0^{++})$

Separate resonance decay and production dynamics

- First precise measurement of π polarizability
 - Pion much stiffer than atom (strong interaction)
 - Excellent agreement with theory (χ PT)
 - Future: separate magnetic and electric polarizabilities
- New path to radiative meson excitations
- Test dynamics with sensitivity to loop contributions
- Diffractive pionic excitations reveal new axial vector meson
 - Partner of $f_1(1420)$? Molecular structure ?
 - Dynamic generation via coupled channel ?

COMPASS "Holography"

Interferometry

xzellenzcluster Universe

Conclusion

COMPA

- Establish new "2D" fit method to perform PWA in $m_{3\pi}$ and t
- Find new iso-vector state $a_1(1420)$
 - $M_{\rm a1(1420)}$ = 1412-1422 MeV/c^2 $\,$, $\Gamma_{\rm a1(1420)}$ = 130-150 MeV/c^2 $\,$
 - (exclusive) decay into $f_0(980)\pi$ in relative P-wave
 - Nature of $a_1(1420)$?

Isospin partner of $f_1(1420)$ (considered to be exotic) ? Dynamically generated through $a_1(1260) \leftrightarrow KK^* \leftrightarrow f_0(980)\pi$ channel ?

- Developed new method to establish shape of isobar-spectrum
 - first application: $[\pi\pi]_s^*$:
 - Shows strong dependence on $m_{3\pi}$ and on J^{PC} of mother wave
 - Reveals information on scalar isobars (measure phases in decays)

Open Path to Dalitz-plot analysis using PWA from PWA identified states

Needs high statistics !!

Conclusion II

- Study of $a_1(1260)$
 - Observe "various components" of $a_1(1260)$ with different t-dependencies:
- Sort out higher excitations of a_1 , a_2
- Radial excitation of π
 - $\pi(1800)$ well known: COMPASS observes decay into $f_0(980)\pi$ and $f_0(1500)$
- Orbital excitation of π
 - $\pi_2(1670)$ well known: COMPASS observes decay into $f_2(1270)$ π no evidence so far for strong coupling into $[\pi\pi]_s^*\pi$
 - $\pi_2(1880)$: Clear signal observed in $f_2\pi$ and $f_0\pi$
- Radiative decays:
 - First observation of a mesonic E2 transition : $\pi_2(1670) \rightarrow \pi \gamma$
 - Good / reasonable agreement with calculations

t dependence of mass distributions

low t

Mass dependent fits

 $J^{PC}M^{\varepsilon}[isobar]\pi L$

Example for *t*-dependence

Exzellenzcluster Universe

OMPA

Phases

πΠ

Mass dependent fits

Exzellenzcluster Universe

Mass dependent fits a₂(1320)

Particle	J^{PC}	$\begin{array}{l} {\rm Mass \ Range} \\ {\rm [\ MeV}/c^2] \end{array}$	${f Width \ Range} \ \left[{ m MeV}/c^2 ight]$	PDG $m [MeV/c^2]$	$egin{array}{llllllllllllllllllllllllllllllllllll$
"Establishe	ed" state	PD	G		
$a_1(1260)$	1^{++}	1260 - 1290	360 - 420	1230 ± 40	250 - 600
$a_2(1320)$	2^{++}	1312 - 1315	108 - 115	$1318.3_{-0.6}^{+0.5}$	107 ± 5
$a_4(2040)$	4++	1928 - 1959	360 - 400	1996^{+10}_{-9}	255^{+28}_{-24}
States not	in PDO				
$a_1(1930)$	1^{++}	1920 - 2000	155 - 255	1930^{+30}_{-70}	155 ± 45
$a_2(1950)$	2^{++}	1740 - 1890	300-555	1950_{-70}^{+30}	180^{+30}_{-70}
truly new state	es				
$a_1(1420)$	1++	1412 - 1422	130 - 150	20	

We have solved a puzzle – but were the building blocks correct ?

New Paths to Meson Decays

- Select *J^{PC}* via PWA
- For each J^{PC} and mass-bin in 3π :
 - determine composition and shapes of 2π isobars
 - complex couplings
 - non-resonant contributions (via *t*-dependence)

How to reconstruct an Image

Major waves

Exzellenzcluster Universe

Sneak Preview – Large Fits

Preview to 21 wave-fit in 2 bins of t'

OMPA

EXCENENZOUSIER UNIVERSE

The End

LAST THE

1

1.2

1.4

1.6

0.8

0.6

1.8 2 2.2 2.4 Mass of the π΄π+π΄ System (GeV/c²)

Isobars: an Example

40

30

25E

20 E

15F

10 F

0

Phys. Rev. D35 1633, Au, Morgan, Pennington

continuum - $[\pi\pi]_s$

fixed functional form – variable intensity/phase (2 parameters) replaced by ONE $[\pi\pi]_{s}^{*}$ histogram with n-bins (2n parameters determined by fit)

Extra Material

Theory predictions α_{π}

- chiral perturbation theory
 - $$\begin{split} \star & (\alpha + \beta)_{\pi^+} = 0 \text{ in leading order } \mathcal{O}(p^4) \\ & (\alpha + \beta)_{\pi^+} = (0.3 \pm 0.1) \times 10^{-4} \text{fm}^3 \text{ in order } \mathcal{O}(p^6) \end{split}$$
 - $\star \, (\alpha \beta)_{\pi^+} \approx 5.4 \times 10^{-4} {\rm fm}^3$ one loop (Bijens, Cornet, 1988; Danoghue, Holstein 1989; Belluci, Gasser, Sainio, 1994) $(\alpha \beta)_{\pi^+} = (4.4 \pm 1.0) \times 10^{-4} {\rm fm}^3$ two loops (Bürgi, 1997)
- Nambu-Jona-Lasino model $\alpha = -\beta = (3.0 \pm 0.6) \times 10^{-4} \mathrm{fm}^3; \ (\alpha \beta)_{\pi^+} = (6.0 \pm 0.8) \times 10^{-4} \mathrm{fm}^3$
- Dispersion relations $(\alpha \beta)_{\pi^+} = (10.3 \pm 1.9) \times 10^{-4} \text{fm}^3$ (Lev Fil'kov, Kashevarov, 1999)
- non linear σ model $(\alpha \beta)_{\pi^+} = 20 \times 10^{-4} \text{fm}^3$ (Bernard, Hiller, Weise, 1988)
- Dubna quark confinement model $(\alpha \beta)_{\pi^+} = 7.05 \times 10^{-4} {\rm fm}^3$ (Ivanov, Mizutani, 1992)

Quick Check for "odd" waves

About 5% absorbed by "odd" waves

Exzellenzcluster Universe

COMPASS Spin-Density Matrix

enzcluster Universe

COMPASS Spin-Density Matrix

enzcluster Universe

Examples for $a_1(1260)$ and $a_2(1420)$

$t' (\text{GeV}/c)^2$	Breit-Wigner		Bowler 1 incl. Deck				
	M (MeV)	Γ (MeV)	M (MeV)	Γ (MeV)	$t' (\text{GeV}/c)^2$	M (MeV)	Γ (MeV)
0.00-0.10	_	_	_	_	0.00-0.10	1319±6	93± 6
0.10-0.25	1126 ± 11	251 ± 15	1146 ± 27	226 ± 48	0.10-0.25	1315±6	103 ± 6
0.25-0.45	1111 ± 16	262 ± 40	1125 ± 13	278 ± 17	0.25-0.45	1311 ± 6	99±6
0.45-0.95	1119±15	218 ± 17	1114 ± 17	236 ± 69	0.450.95	1335 ± 6	127 ± 10

- $f_0(980)$ correlated with $a_1(1420)$
- non-resonant contributions at low t'
- warning !! just intensity cuts, amplitude selection
 mass dependent fit

How to reconstruct an Image

Add more dynamics

Optical methods:

If you have enough lasers.. you can add color to your phase shift holography

- solves sign of phase shift ambiguities
- useful for recording dynamic processes

Details on $(\pi\pi)_{S-wave}$

 $\pi\pi_S$ Intensities

 $\pi \pi_{\rm S}$ phases $\phi_{tot} = \phi_{production}^{3\pi} + \varphi_{decay}^{2\pi}$

 $\pi\pi_S$ Argand diagram

high *t*

Correlation: $m_{2\pi} - m_{3\pi}$

high t'

Mass of $\pi^{-}\pi^{+}\pi^{-}$ (GeV/ c^{2})

Details on $(\pi\pi)_{S-wave}$

Some intriguing aspects

Some intriguing aspects

Exzellenzcluster Universe

Non-resonant processes

high t'

Real Part relative to the 1"0" [p] 7 S (A. U.)

Real Part relative to the 1``0` [ρ]π S (Â. U.)

high t'

Real Part relative to the 1 0 [] 7 S (A. U.)

Discussion of $\pi\pi$ -Phases

Real Part relative to the 1"0" [p] 7 S (A. U.)

Real Part relative to the 1``0` [ρ]π S (Â. U.)

high t'

Real Part relative to the 1 0 [] 7 S (A. U.)

• absorb complex strength functions f_k into $T^{k,\varepsilon}_{\alpha r,J^{PC}[\pi^+\pi^-]_{S-wave}}$

• write intensity as:
$$\mathcal{I}(\tau) = \sum_{r=1}^{N_r} \sum_{\varepsilon=\pm 1} \left| \sum_{\alpha} T_{\alpha r}^{\varepsilon} \psi_{\alpha}^{\varepsilon}(\tau) \right|^2 + T_{FLAT}^2$$

and fit f_k :

- for each 2-body mass bin k (bin width variable)
- for each 3-body mass bin m_{χ} (bin width 20 MeV/c²)
- Determine phase as usual : w.r.t. $1^{++}0^+\rho\pi S$
- Mass dependent fit:
 - use anchor wave with parametrization of 2π -isobars
 - use model for 3π-isobars and 2π-isobars: $f0(600), f0(980), f0(1370), f0(1500) exp(-\alpha p^2)$

$$\rho_{0,j}(m_X) = \left(\sum_k C_{0k} BW_{0k}(m_{3\pi})\right)^* \cdot \left(\sum_{k,q} C_{jkq} BW_{jk}(m_{3\pi}) BW_{kq}(m_{2\pi})\right)$$

Ilenzcluster Universe

Mass distributions

Technical plots

z-vertex

RICH before PID cuts

- 6 waves: (9 BW + 6 NR)*11(t'-bins)=165 couplings
 - for each complex coupling: 2 parameters
 - minus 11 since 1 coupling for each t' bin is real
 - 319 parameters
- 18 parameters for BW
- 15 parameters for NR
- Total: 352 real parameters

Use only lowest m = 0,1 waves (so far) Model:

1 ⁺⁺ 1 ⁺ ρπ S 2 ⁺⁺ 0 ⁺ ρπ D 4 ⁺⁺ 1 ⁺ ρπ G 2 ⁻⁺ 0 ⁺ f ₂ π S 1 ⁺⁺ f ₂ (980) π P		 2 resonances 2 resonances 1 resonance 2 resonances 1 resonances 	: $a_1(1260)$ and a_1' : $a_2(1320)$ and a_2' : $a_4(2040)$: $\pi_2(1670)$ and π_2' : $a_1(1420)$
0 ⁻⁺ f	² ₀ (980) π S Partial Wave	1 resonance 1 resonance Lower Bound $[\text{GeV}/c^2]$	$\pi (1420)$: $\pi (1800)$ Upper Bound [GeV/ c^2]
$\begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array}$	$ \begin{array}{c} 1^{++}0^{+}\rho\pi S \\ 2^{++}1^{+}\rho\pi D \\ 2^{-+}0^{+}f_{2}(1270)\pi S \\ 4^{++}1^{+}\rho\pi G \end{array} $	$0.90 \\ 0.90 \\ 1.40 \\ 1.25$	$2.32 \\ 2.12 \\ 2.32 \\ 2.32 \\ 2.32$

Fit Functions

Simple fixed-width Breit-Wigner:

$$\mathcal{F}(m) = \frac{\sqrt{m_0 \, \Gamma_0}}{m_0^2 - m^2 - i \, m_0 \, \Gamma_0}$$

Breit-Wigner with mass-dependent width for one decay channel:

$$\mathcal{F}(m) = \frac{\sqrt{m_0 \, \Gamma_0}}{m_0^2 - m^2 - i \, m_0 \, \Gamma(m)}; \quad \Gamma(m) = \Gamma_0 \, \frac{m_0}{m} \, \frac{q \, F_L^2(q)}{q_0 \, F_L^2(q_0)}$$

Breit-Wigner with mass-dependent width for decay channels:

$$\mathcal{F}(m) = \frac{\sqrt{m_0 \,\Gamma_0}}{m_0^2 - m^2 - i \,m_0 \,\Gamma(m)}; \quad \Gamma(m) = \Gamma_0 \,\frac{m_0}{m} \left[(1 - x) \frac{q_1 \,F_L^2(q_1)}{q_{1,0} \,F_L^2(q_{1,0})} + x \,\frac{q_2 \,F_L^2(q_2)}{q_{2,0} \,F_L^2(q_{2,0})} \right]$$

Bowler parametrization:

$$\mathcal{F}(m) = \frac{\sqrt{m_0 \,\Gamma_0}}{m_0^2 - m^2 - i \,m_0 \,\Gamma_B(m)}; \quad \Gamma_B(m) = \Gamma_0 \,\frac{m_0}{m} \,\frac{\phi_3(m)}{\phi_3(m_0)}$$

$$\mathcal{F}_{\mathrm{NR},1}(m,t') = (m-m_0)^{c_0} e^{(c_1+c_2t+c_3t^2) q^2} \qquad \text{big waves} \qquad \begin{array}{c} \mathrm{non-resonant} \\ \mathcal{F}_{\mathrm{NR},2}(m) = e^{c_1 q^2} & \text{small waves} \end{array}$$

COMPASS

Resonances

Fit in 11 t-bins

 $4^{++}1^{+}\rho\pi$ D

Exzellenzcluster Universe

incoherent sum

Fit in 11 t-bins

 $4^{++}1^{+}\rho\pi$ D

incoherent sum

Exzellenzcluster Universe

Fit in 11 t-bins ¹2^{-t}0⁺ f₂(1270) π S

$2^{-+}0^{+}f_{2}\pi S$

Fit in 11 t-bins

 $2^{-+}0^{+}f_{2}\pi S$

Exzellenzcluster Universe

Fit in 11 t-bins

0⁻⁺0⁺ f₀(980) π S

incoherent sum

Data-MC comparison

Data-MC comparison

Quick Check for "odd" waves

About 5% absorbed by "odd" waves

- and fit decay amplitudes f_k :
 - for each 2-body mass bin k (bin width variable: $10-20 \text{ MeV/c}^2$)
 - for each 3-body mass bin m_{χ} (bin width 20 MeV/c²)
- Determine phase as usual : w.r.t. $1^{++}0^+\rho\pi S$
- Mass dependent fit:
 - use anchor wave with parametrization of 2π -isobars
 - use model for 3π -isobars and 2π -isobars:

$$f0(600), f0(980), f0(1370), f0(1500) exp(-\alpha p^{2}) \text{ non-resonant}$$

$$\rho_{0,j}(m_{X}) = \left(\sum_{k} C_{0k} BW_{0k}(m_{3\pi})\right)^{*} \cdot \left(\sum_{k,q} C_{jkq} BW_{jk}(m_{3\pi}) BW_{kq}(m_{2\pi})\right)$$
anchor wave
$$j = 1: 0^{-+} \quad j = 2: 1^{++}$$

How to produce "other" mesons

- Diffraction: $\pi p_{target} \rightarrow X + p_{recoil} \rightarrow n\pi + p_{recoil}$
 - isospin = 1
 - spin-alignment M of resonance X w.r.t. to production mormal
 - PWA is clean
 - isospin = 0 possible in decay products of X
- Central production: $pp_{target} \rightarrow p_{fast} + X + p_{recoil}$

$$\rightarrow p_{fast} + n\pi/K/\eta + p_{recoil}$$

- isospin = 0
- "glue-rich" systems
- PWA with ambiguities for n=2
- typically populating low spin states J
- J/ ψ -decays: J/ ψ \rightarrow X + γ_{recoil}
- pp-annihilations or heavy meson decays (Dalitz plot analysis)
 - typically populating low spin states ${\cal J}$

