Effective field theories for QCD at non-zero temperature

Simone Biondini

T30f - Technische Universität München

Kick-off Symposium of Hans Fischer Senior Fellow Dr. Andreas Kronfeld
Garching, November 26th
1 Motivation and introduction

2 EFTs for heavy quarkonium at finite T

3 Heavy quarkonium and anisotropic QGP

4 Conclusions and Outlook
Motivation and introduction

When do we find a hot QCD medium?

- Transition of nuclear matter into a deconfined phase at high temperature
- Hot medium made of interacting quark and gluons \rightarrow Quark-Gluon Plasma

Cosmology: early Universe likely was an hot and dense medium
How can we hope to reproduce the QGP?

- the high energy heavy-ion colliders, such as the LHC, are the right place

Time scales for Quark Gluon Plasma

- Formation time $\tau_0 \sim 1$ fm (in physical units 3.3×10^{-24} s)
- Life time of equilibrated deconfined phase $\tau \sim 10$ fm
Motivation and introduction

What comes out from QGP?

Very complicated final state to study
- demanding and challenging experimental analysis
- clean probes are needed...is it possible to have any?

S. Biondini (TUM)
Hans Fischer Symposium
TUM-IAS Garching
Motivation and Introduction

Hard Probes for QGP

How can we get information about a so short-lived state?

- A possible way is by exploiting hard probes,
 - jet quenching X. N. Wang and M. Gyulassy (1994)
 - quarkonia suppression T. Matsui and H Satz (1986)

Heavy $Q\bar{Q}$ in medium

Medium effect can dissociate the $Q\bar{Q}$

$$V(r) = -C_F \frac{\alpha_s}{r} \rightarrow -C_F \alpha_s \frac{e^{-m_D(T)r}}{r}$$

- At some T_d the bound state ceases to exist: $m_D > 1/r$

\Rightarrow Suppressed yield of dilepton decay channel $R_{AA}(Q\bar{Q})$
Suppression pattern for the $\Upsilon(nS)$ family at CMS

The more bounded states are less suppressed

How can we better understand this evidence?
EFTs for heavy quarkonium at finite T

Energy scales for heavy quarkonium

Many energy scales are there: (perturbative regime and weak coupling)

1) Non-relativistic scales (bound state):

\[m \gg mv \left(\frac{1}{r} \right) \gg mv^2 (E) \gg \Lambda_{QCD} \]

2) Thermodynamic scales:

\[\pi T \gg m_D \]

- A weakly coupled quarkonium could be the $\Upsilon(1S)$

\[m_b \approx 5 \text{ GeV} > m_b \alpha_s \approx 1.5 \text{ GeV} > \pi T \approx 1 \text{ GeV} > m_b \alpha_s^2 \approx 0.5 \text{ GeV} > m_D \approx \Lambda_{QCD} \]

- $\Upsilon(1S)$ may still survive in QGP and be perturbative

- Study the thermal effects on the $\Upsilon(1S)$ spectrum
Towers of EFTs suitable to describe the quarkonium system at a given energy scale
EFT for QCD

How to disentangle the different scales from L_{QCD}

\[L_{QCD} = -\frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \bar{Q} \left(i \partial - M \right) Q + L_{Light} \]

- A useful way: Effective Field Theory
 1. Select the right degrees of freedom
 2. Build the effective Lagrangian
 3. Perform calculations with a simplified version of L_{QCD}

- We are interested in the spectrum of $Q\bar{Q} \Rightarrow$ binding energy (Mv^2)

- The EFT is pNRQCD: $E \sim Mv^2$, N. Brambilla, A. Pineda, J. Soto and A. Vairo (1999)
- The Lagrangian acquires a Schrödinger equation-like form
 \[V(r) \text{ obtained rigourosly form QCD} \]
EFTs for heavy quarkonium at finite T

pNRQCD IN VACUUM

pNRQCD LAGRANGIAN

- Assuming the hierarchy $m \gg \frac{1}{r} \gg E$

\[
\mathcal{L}_{pNRQCD} = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + \sum_i \bar{q}_i i D q_i + \int d^3 r Tr \left\{ S^\dagger (i \partial_0 - h_s) S + O^\dagger (i D_0 - h_o) O \\
+ V_A (O^\dagger r \cdot g E S + h.c.) + \frac{V_B}{2} O^\dagger \{ r \cdot g E, O \} + \cdots \right\}
\]

- where we have defined

 - Singlet field S, Octet field O
 - $h_{s,o} = \frac{p^2}{m} + V_{s,o}^{(0)} + \frac{V_{s,o}^{(1)}}{M} + \cdots$
 - $V_s^{(0)} = -C_F \frac{\alpha_s}{r}$ and $V_o^{(0)} = \frac{1}{2N_c} \frac{\alpha_s}{r}$

All the scales bigger than Mv^2 contribute to the potential $V^{(0)}$
We take the scales πT and m_D bigger than the binding energy

$$1/r \gg \pi T \gg m_D \gg mv^2,$$

\[k \sim \pi T \quad k \sim m_D \]

We do a matching from $pNRQCD \rightarrow pNRQCD_{HTL}$, where

\[V_s(r, T, m_D) = -C_F \frac{\alpha_s}{r} + \delta V_R(r, T, m_D) + i\delta V_I(r, T, m_D) \]

δV_R: mass of $Q\bar{Q}$ state, δV_I: related to the width

\[\frac{i}{k^0 - E + i\frac{\Gamma}{2}} \Rightarrow \begin{cases} E = \langle \text{Re}(V) \rangle \\ \Gamma = -2\langle \text{Im}(V) \rangle \end{cases} \]
The interactions with the medium can break the $Q\bar{Q}$ bound state

$$
\delta V_I(r, T, m_D) = -\frac{N_c^2 C_F}{6} \alpha_s^3 T \\
+ \frac{C_F}{6} \alpha_s r^2 T m_D^2 \left(2\gamma_E - \log \frac{T^2}{m_D^2} - 1 - 4 \log 2 - 2 \frac{\zeta'(2)}{\zeta(2)} \right) + \frac{4\pi}{9} \log 2N_c C_F \alpha_s^2 r^2 T^3
$$

Singlet to octet thermal break-up: dominant if $E \gg m_D$

- Singlet absorbs a gluon from the medium

Landau damping phenomenon: dominant if $m_D \gg E$

S. Biondini (TUM)
Hans Fischer Symposium
TUM-IAS Garching
Anisotropy in QGP

QGP is a rather complicated system...

- Longitudinal (beam axis) expansion is bigger than the radial expansion

 1) Different temperatures
 2) Anisotropic parton momenta

Local momentum anisotropy: ξ

The anisotropy effects on the $Q\bar{Q}$ spectrum studied for $\pi T \gg 1/r \sim m_D$

We can address within EFTs the case $1/r \gg \pi T \gg E \gg m_D$

Modelling the anisotropy

$$f(k) = f_{iso} \left(\sqrt{k^2 + \xi (k \cdot n)^2} \right) = \left(e^{\frac{\sqrt{k^2 + \xi (k \cdot n)^2}}{T}} - 1 \right)^{-1}$$
We start with pNRQCD: \(1/r \gg \pi T \gg E \gg m_D \)

\[
\mathcal{L}_{\text{pNRQCD}} = -\frac{1}{4} F_{\mu \nu}^a F^{a \mu \nu} + \sum_i \bar{q}_i i \slashed{D} q_i + \int d^3 r Tr \left\{ S^\dagger (i \partial_0 - h_s) S + O^\dagger (iD_0 - h_o) O \right\} \\
+ V_A \left(O^\dagger \mathbf{r} \cdot g \mathbf{E} S + h.c. \right) + \frac{V_B}{2} O^\dagger \{ \mathbf{r} \cdot g \mathbf{E}, O \} + \cdots
\]

- Match pNRQCD onto pNRQCD\text{HTL}
- \(T \) encoded in a redefined potential

\[
\delta \Sigma(E) = -ig^2 C_F r^i \mu^{4-D} \int \frac{d^D k}{(2\pi)^D} \frac{i}{E-h_0-k_0+i\eta} k_i^2 D_{ii} (k_0, k) r^i
\]

- Momentum region \(k_0 \sim \pi T \) and \(k \sim \pi T \). Since \(\pi T \gg (E - h_0) \)

\[
\frac{i}{E-h_0-k_0+i\eta} = \frac{i}{-k_0+i\eta} - i \frac{E-k_0}{(-k_0+i\eta)^2} + \cdots
\]

- At leading order in \(\alpha_s \) we obtain

\[
\delta V_s(r, T, \xi) = \frac{\pi \alpha_s C_F T^2}{3} \left(\frac{2}{m} + \frac{N_c \alpha_s r}{4} + \frac{N_c \alpha_s (\mathbf{r} \cdot \mathbf{n})^2}{4r} \right) \frac{\arctan \xi}{\xi} \\
+ \frac{\pi N_c C_F \alpha_s^2 T^2}{12 \xi r} \left(1 - \frac{\arctan \sqrt{\xi}}{\sqrt{\xi}} \right) (r^2 - 3(\mathbf{r} \cdot \mathbf{n})^2)
\]
Strategy of the Calculation: \(1/r \gg \pi T \gg E \gg m_D\)

- Effect of the scale \(E\) within pNRQCD_{HTL}
- Octet unexpanded,
- \(f(k) \sim \frac{T}{k \sqrt{1 + \xi \cos^2 \theta}} + \ldots\)

- Thermal width from the scale \(E\): \(\Gamma = -2 \langle n, l | \text{Im} \delta \Sigma(E) | n, l \rangle\)

\[
\Gamma(T, \xi) = \left(\frac{1}{3} N_c^2 C_F \alpha_s^3 T + \frac{4}{3} \frac{C_F^2 \alpha_s^3}{n^2} T (C_F + N_c)\right) \frac{\sinh^{-1}(\sqrt{\xi})}{\sqrt{\xi}} \sinh^{-1}(\sqrt{\xi}) - \sqrt{\xi} (1 + \xi) \frac{1}{\sqrt{\xi^3}} \langle 2 \ell 0 0 | \ell 0 \rangle \langle 2 \ell 0 m | \ell m \rangle
\]

- Check with \(\xi \to 0\), we recover the known result

 \[N.\;Brambilla,\;M.\;A.\;Escobedo,\;J.\;Ghiglieri,\;J.\;Soto\;and\;A.\;Vairo\; (2010)\]
Check with known limits

Real part of the potential (for $\Upsilon(1S)$)

$$V_s(r, T, \xi) \rightarrow -c_F \frac{\alpha_s}{r} + \frac{\pi}{9} N_c C_F \alpha_s^2 T^2 r + \frac{2\pi}{3m_b} C_F \alpha_s^2 T^2 + O(\xi)$$

Thermal width

$$\Gamma(T, \xi) \rightarrow \frac{1}{3} N_c^2 C_F \alpha_s^3 T + \frac{4}{3} C_F^2 \alpha_s^3 T (C_F + N_c) + O(\xi)$$

Graphs:
- **Left graph:** Plot of $\text{Re}[V]$ vs. T for different values of ξ.
- **Right graph:** Plot of Γ vs. T for different values of ξ. The graphs show how the real part of the potential and the thermal width vary with temperature and the parameter ξ.
LATTICE AND HOT QCD

TRANSITION TEMPERATURE: NON-PERTURBATIVE PROCESS

- $\epsilon(T, \mu_B = 0)$ against the temperature
- $150 \text{ MeV} < T < 350 \text{ MeV}$ energy density increases
- Change of the degrees of freedom (hadrons \rightarrow QGP)

A. Bazavov et al (2014)

- More precise lattice calculation for the T_c
- Very important to shape the crossover in heavy-ion collisions

A. Bazavov et al (2012)
Interplay between pNRQCD and Lattice at finite temperature

A. Bazavov, M. Berwein, N. Brambilla, P. Petreczky, A. Vairo and J. Weber

- V_0 static quark-antiquark potential at $T = 0$
- F_1 free energy of the quark-antiquark system

At short distances thermal effects should vanish: $F_1 \rightarrow V_0$

At short distances perturbative calculation should describe the lattice data
Conclusions and Outlook

- Study the QCD phase diagram at finite temperature and density
- Hot QCD medium is established in heavy-ion collisions

- Heavy quarkonia is a useful probe to address the QGP properties
- $Q\bar{Q}$ in QGP is a multi-scale system: effective field theories

- Clear identification of relevant degrees of freedom and physics at different scales
- Temperature and anisotropy of the system taken into account

- No weak coupling regime \rightarrow Non-perturbative techniques: Lattice
- Lattice helps in shaping the QCD phase diagram
- Interplay between EFT and Lattice Gauge Theory