## Habemus Higgsum!

... and other results from LHC:

precision tests of Standard Model
top quark mass
Higgs: discovery and properties
searches for physics beyond SM

selection, from O(1000) LHC publications



S. Bethke Max-Planck-Institut für Physik

## The "Standard Model" of Particle Physics

... is rather simple (und "übersichtlich"):

| Eleme    | entary   | Particl      | es             | Elementary Forces |                |                      |
|----------|----------|--------------|----------------|-------------------|----------------|----------------------|
|          | <b>G</b> | enerati<br>2 | <b>on</b><br>3 |                   | exchange boson | relative<br>strength |
| Quorka   | u        | с            | t              | Strong            | g              | 1                    |
| Quarks   | d        | S            | b              | elmagn.           | γ              | 1/137                |
| <b>—</b> | ve       | $v_{\mu}$    | $\nu_{\tau}$   | Weak              | $W^{\pm}, Z^0$ | 10-14                |
| Leptons  | e        | μ            | τ              | Gravitation       | G              | 10-40                |

... as well as anti-particles

... describes the unified electro-weak interaction and the Strong force with gauge invariant quantum field theories;

... precisely describes all particle reactions observed to date

- ... provides a consistent (yet incomplete) picture of the evolution
  - of the very early universe -> cosmology
- ... theoretical explanation of particle masses: the Higgs Boson

LHC results

## Limitations of the SM:

#### • it is incomplete :

- too many free parameters (26 masses, couplings ... -> experiment)
- symmetry breaking mechanism unclear (Higgs mechanism, masses)
- it leaves open many fundamental questions :

   why are there 3 families of quarks and leptons ?
   why is (electron charge) = -(proton charge) ?
  - what happened to the anti-matter in the universe ?
  - do forces unify at high energies (GUT) ?



# -> SM is only an effective theory -> there must be physics beyond SM (BSM)

today, there are few but significant signals for BSM physics:

neutrinos are not massless

95% of the mass/energy budget of the universe cannot be explained by SM particles and forces:

 Dark Matter (23%)
 Dark Energy (73%)

if it's not **Cark** it doesn't matter

### The Large Hadron Collider (LHC)



Proton – Proton collisions at 14 TeV c.m. energy

2835 x 2835 bunches distance: 7.5 m (25 ns)

10<sup>11</sup> Protons / bunch Collision rate: 40 million / sec. Luminosity:  $L = 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$ 

Proton-Proton collisions: ~10<sup>9</sup> / sec (about 40 pp-interactions per bunch crossing)

~1600 charged particles in detector

high demands on detectors, electronics, triggers, data management and analyses

#### The ATLAS Detector at the LHC



Planning & construction 1990 to 2007, operation from 2009 to ~ 2035

7

#### production cross sections at the LHC



S.Bethke, MPP München

Kronfeld Symposium, IAS / TUM Munich, November 26, 2014

#### total cross section at the LHC



9

#### opposite charge di-muon mass spectrum



LHC results

#### total production cross sections of W, Z bosons



#### Standard Model Total Production Cross Section Measurements Status: July 2014



#### summary of $\alpha_s$ measurements

at hadron colliders (ep, pp, ppbar)

K.Rabbertz, ICFA Beijing 2014



n.b.: world average is  $\alpha_s(M_z) = 0.1185 \pm 0.0006$  (dominated by Lattice Theory)

#### measurements of top-quark- and W- masses

direct: Tevatron (W,t) and LHC (t) indirect: from world's e.w. precision measurements M<sub>Higgs</sub>: LHC



Kronfeld Symposium, IAS / TUM Munich, November 26, 2014 14

## Measurements of the top-quark mass in the lepton+jets and dilepton channels

**Top Pair Branching Fractions** 



#### m<sub>top</sub> is a fundamental parameter of the SM

- in the lepton+jets channel, m<sub>top</sub> is measured via a three-dimensional template method, together with global jet energy scale factors (JSF, and bJSF) to reduce the impact of the jet energy uncertainties (on light- and b-quark jet, respectively).
  - m<sub>top</sub> = 172.31 ± 1.55 GeV
- In the dilepton channel, a one-dimensional template method is used, based on a partial event reconstruction based on lepton and b-quark jets information (m<sub>lb</sub>).
  - m<sub>top</sub> = 173.09 ± 1.63 GeV



## First m<sub>top</sub> world combination



For the first time, m<sub>top</sub> results from the Tevatron and the LHC colliders have been combined (5 input measurements from the LHC and 6 from the Tevatron).

#### The combined m<sub>top</sub> result is 173.34 ± 0.76 GeV

- ≈28% more precise than the most precise single m<sub>top</sub> determination
- ≈13% (≈20%) more precise than the previous Tevatron (LHC) combination

arXiv:1403.4427

### origin of (elementary) particle masses

particles acquire mass through interaction with the Higgs Boson:



in SM: coupling strength proportional to particle mass

LHC results

S.Bethke, MPP München

Kronfeld Symposium, IAS / TUM Munich, November 26, 2014

17

## <u>Search for the (SM) Higgs boson</u> Higgs production:



LHC results

#### Search for the (SM) Higgs boson

#### Higgs decays:



... prefers to decay into heaviest particles kinematically accessible!

- however, hadronic decays hopeless due to huge background
- H->WW: possible, but only leptonic decays; however, neutrinos … !
- best exp. signature & mass reconstruction:  $H \rightarrow \gamma\gamma$ ,  $H \rightarrow ZZ \rightarrow 4\ell$

LHC results

Kronfeld Symposium, IAS / TUM Munich, November 26, 2014

19

#### CMS: candidate event H -> ZZ-> eeµµ

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

#### ATLAS: candidate event H $\rightarrow \gamma\gamma$



LHC results

S.Bethke, MPP München

Kronfeld Symposium, IAS / TUM Munich, November 26, 2014 21

#### observation of a new boson



LHC results

#### observation of a new boson



ATLAS:  $M_H = 125.36 \pm 0.41 \text{ GeV}$ CMS:  $M_H = 125.03 \pm 0.30 \text{ GeV}$  interim summary:

#### ... it is a Boson !

spin = 0 or 2 (decays into 2 photons) !

(n.b.: first elementary particle with integer spin  $\neq$  1 !)

#### ... is it **a** Higgs Boson?

- electro-weak symmetry breaking, i.e. are couplings to fermions/bosons ~ mass ?
- first of several SUSY Higgs-Bosons?

#### ... is it **the** (SM) Higgs Boson?

- are its couplings exactly as predicted by SM?
- spin/parity =  $0^+$  ?

#### <u>H couplings to fermions: Η –> ττ</u>



**significance: 4.1**  $\sigma$  $\mu$  = **1.4** ± <sup>0.5</sup><sub>0.4</sub>

#### normalised couplings



 $\bullet$  absolute decay rates in  $\gamma\gamma$  and in ZZ/WW are different by a factor

- ~10 -> broken symmetry! -> it is "a" Higgs!
- measured decay rates compatible with SM Higgs Boson, but statistics not yet sufficient to "prove" SM predictions.

LHC results

Kronfeld Symposium, IAS / TUM Munich, November 26, 2014

26

## Spin/Parity studies

spin/parity studies in YY, 4ℓ and WW channels using observables sensitive to angular distributions:

- Collins-Soper  $|\cos\theta^*|$  for  $\gamma\gamma$
- MELA or BDT discriminators in 4<sup>l</sup>
- BDTs for WW

#### data consistent with 0+ in all tests

- 0<sup>-</sup> excluded with 99.6% CL in 4<sup>l</sup>
- $1^+/1^-$  also excluded with >97% in 4 $\ell$
- spin-2 case simple Graviton Model "2m"
- exclusion of all 2m hypotheses with 97-99% C

-> it's "a" Higgs! Habemus Higgsum!





S.Bethke, MPP München

#### searches for new physics beyond the SM: e.g. excited Quarks



production of excited quarks ruled out in mass intervall 0.3 < m < 4 TeV (Tevatron limit: 0.8 TeV)

Kronfeld Symposium, IAS / TUM Munich, November 26, 2014 28

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: ICHEP 2014

|                    | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $e, \mu, \tau, \gamma$                                                                                                                                                                                          | Jets                                                                                                                                    | $E_{\mathrm{T}}^{\mathrm{miss}}$                                   | $\int \mathcal{L} dt [f]$                                                                                | b <sup>-1</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mass limit                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reference                                                                                                                                                                                                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches | $\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\tilde{k}}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\tilde{k}}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\tilde{k}}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{0}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\ell}_{1}^{0} \\ GMSB (\ell  NLSP) \\ GMSB (\tilde{\ell}  NLSP) \\ GGM (bino  NLSP) \\ GGM (mino  NLSP) \\ GGM (higgsino-bino  NLSP) \\ GGM (higgsino  NLSP) \\ Gravitino  LSP \end{array}$                                                                                                                                                                             | $\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \cdot 2 \ \tau + 0 \cdot 1 \ \ell \\ 2 \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$ | 2-6 jets<br>3-6 jets<br>2-6 jets<br>2-6 jets<br>3-6 jets<br>3-6 jets<br>0-3 jets<br>2-4 jets<br>0-2 jets<br>1 b<br>0-3 jets<br>mono-jet | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>4.7<br>20.3<br>20.3<br>4.8<br>4.8<br>5.8<br>10.5 | 4.g<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1<br>1.2 TeV<br>1.1 TeV<br>850 GeV<br>1.33 TeV<br>1.33 TeV<br>1.18 TeV<br>1.12 TeV<br>1.12 TeV<br>1.24 TeV<br>1.28 TeV<br>1.28 TeV<br>619 GeV<br>900 GeV<br>690 GeV<br>645 GeV | <b>7 TeV</b> $m(\bar{q})=m(\bar{g})$<br>any $m(\bar{q})$<br>any $m(\bar{q})$<br>$m(\bar{k}_{1}^{0})=0 \text{ GeV}, m(1^{st} \text{ gen}, \bar{q})=m(2^{sd} \text{ gen}, \bar{q})$<br>$m(\bar{k}_{1}^{0})=0 \text{ GeV}$<br>$m(\bar{k}_{1}^{0})=0 \text{ GeV}$<br>$m(\bar{k}_{1}^{0})=0 \text{ GeV}$<br>$tan\beta<15$<br><b>TeV</b> $tan\beta>20$<br>$m(\bar{k}_{1}^{0})>50 \text{ GeV}$<br>$m(\bar{k}_{1}^{0})>50 \text{ GeV}$<br>$m(\bar{k}_{1}^{0})>50 \text{ GeV}$<br>$m(\bar{k}_{1}^{0})>200 \text{ GeV}$<br>m(NLSP)>200  GeV<br>$m(G)>10^{-4} \text{ eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1405.7875<br>ATLAS-CONF-2013-062<br>1308.1841<br>1405.7875<br>1405.7875<br>ATLAS-CONF-2013-062<br>ATLAS-CONF-2013-069<br>1208.4688<br>1407.0603<br>ATLAS-CONF-2012-001<br>ATLAS-CONF-2012-144<br>1211.1167<br>ATLAS-CONF-2012-152<br>ATLAS-CONF-2012-152 |
| g med.             | $\tilde{g} \rightarrow b\tilde{b}\tilde{\chi}_{1}^{0}$<br>$\tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}$<br>$\tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}$<br>$\tilde{g} \rightarrow b\tilde{t}\tilde{\chi}_{1}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0-1 <i>e</i> , µ<br>0-1 <i>e</i> , µ                                                                                                                                                                  | 3 b<br>7-10 jets<br>3 b<br>3 b                                                                                                          | Yes<br>Yes<br>Yes<br>Yes                                           | 20.1<br>20.3<br>20.1<br>20.1                                                                             | 8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.25 TeV<br>1.1 TeV<br>1.34 TeV<br>1.3 TeV                                                                                                                                       | m(k <sup>0</sup> <sub>1</sub> )<400 GeV<br>m(k <sup>0</sup> <sub>1</sub> ) <350 GeV<br>m(k <sup>0</sup> <sub>1</sub> )<400 GeV<br>m(k <sup>0</sup> <sub>1</sub> )<300 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1407.0600<br>1308.1841<br>1407.0600<br>1407.0600                                                                                                                                                                                                         |
| direct production  | $ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\ell}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\ell}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow b \tilde{\ell}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{light}), \tilde{t}_1 \rightarrow W b \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow b \tilde{\ell}_1^{\pm} \\ \tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow t \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\ell}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (\text{netural GMSB}) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $                            | $\begin{array}{c} 0 \\ 2  e, \mu  (\mathrm{SS}) \\ 1 - 2  e, \mu \\ 2  e, \mu \\ 2  e, \mu \\ 0 \\ 1  e, \mu \\ 0 \\ 1  e, \mu \\ 0 \\ 3  e, \mu  (Z) \end{array}$                                              | 2 b<br>0-3 b<br>1-2 b<br>0-2 jets<br>2 jets<br>2 b<br>1 b<br>2 b<br>nono-jet/c-ts<br>1 b<br>1 b<br>1 b                                  | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.1<br>20.3<br>4.7<br>20.3<br>20.3<br>20.1<br>20.1<br>20.3<br>20.3<br>20.3<br>20.3                      | $ \begin{array}{c} \bar{b}_{1} \\ \bar{b}_{1} \\ \bar{i}_{1} \\ \bar{i}_{2} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100-620 GeV<br>275-440 GeV<br>110 <mark>-167 GeV</mark><br>130-210 GeV<br>215-530 GeV<br>150-580 GeV<br>260-640 GeV<br>90-240 GeV<br>150-580 GeV<br>290-600 GeV                  | $\begin{array}{l} m(\tilde{k}_{1}^{0}) < \!90  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) = \!2  m(\tilde{k}_{1}^{0}) \\ m(\tilde{k}_{1}^{0}) = \!\!55  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) = \!\!56  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) = \!\!16  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) = \!\!16  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) < \!\!200  \mathrm{GeV},  m(\tilde{k}_{1}^{0}) \!\!-\!\!m(\tilde{k}_{1}^{0}) \!\!=\!\!56  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) \!\!=\!\!06  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) \!\!=\!\!06  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) \!\!=\!\!06  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) \!\!=\!\! 150  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) \!\!=\!\!150  \mathrm{GeV} \\ m(\tilde{k}_{1}^{0}) \!\!=\!\!100  \mathrm{GeV} \\ m(\tilde{k}^{0}) \!\!=\!\!100  \mathrm{GeV} \\ m(\tilde{k}^{0}$ | 1308.2631<br>1404.2500<br>1208.4305, 1209.2102<br>1403.4853<br>1403.4853<br>1308.2631<br>1407.0583<br>1406.1122<br>1407.0608<br>1403.5222<br>1403.5222                                                                                                   |
| direct             | $\begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{array}$ | 2 e, μ<br>2 e, μ<br>2 τ<br>3 e, μ<br>2-3 e, μ<br>1 e, μ<br>4 e, μ                                                                                                                                               | 0<br>0<br>0<br>2 <i>b</i><br>0                                                                                                          | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                      | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                             | $\tilde{I} = \tilde{X}_{1}^{\pm} \tilde{X}_{1}^{\pm} \tilde{X}_{2}^{\pm} \tilde{X}_{2}^$ | 90-325 GeV<br>140-465 GeV<br>100-350 GeV<br>700 GeV<br>420 GeV<br>285 GeV<br>620 GeV                                                                                             | $\begin{array}{c} m(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{n}){+}m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{n}){+}m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{n}){=}m(\tilde{k}_{2}^{0}), m(\tilde{\ell}_{1}^{n}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{n}){+}m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{n}){=}m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}){=}0, sleptons  decoupled \\ m(\tilde{k}_{1}^{n}){=}m(\tilde{k}_{2}^{0}), m(\tilde{\ell}_{1}^{n}){=}0,  sleptons  decoupled \\ m(\tilde{k}_{2}^{n}){=}m(\tilde{k}_{2}^{0}), m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{1}^{n})) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1403.5294<br>1403.5294<br>1407.0350<br>1402.7029<br>1403.5294, 1402.7029<br>ATLAS-CONF-2013-093<br>1405.5086                                                                                                                                             |
| particles          | Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$<br>Stable, stopped $\tilde{g}$ R-hadron<br>GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$<br>GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_{1}^{0}$<br>$\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow q q \mu$ (RPV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Disapp. trk<br>0<br>,μ) 1-2 μ<br>2 γ<br>1 μ, displ. vtx                                                                                                                                                         | 1 jet<br>1-5 jets                                                                                                                       | Yes<br>Yes<br>Yes                                                  | 20.3<br>27.9<br>15.9<br>4.7<br>20.3                                                                      | X<br>2<br>X<br>1<br>X<br>1<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 270 GeV<br>832 GeV<br>475 GeV<br>230 GeV<br>1.0 TeV                                                                                                                              | $\begin{array}{l} m(\tilde{\chi}_1^z) \cdot m(\tilde{\chi}_1^\theta) {=} 160 \; MeV, \; r(\tilde{\chi}_1^z) {=} 0.2 \; ns \\ m(\tilde{\chi}_1^\theta) {=} 100 \; GeV, \; 10 \; \mu s {<} r(\tilde{\mathfrak{g}}) {<} 1000 \; s \\ 10 {<} tan\beta {<} 50 \\ 0.4 {<} r(\tilde{\chi}_1^\theta) {<} 2 \; ns \\ 1.5 {<} cr {<} 156 \; mm, \; BR(\mu) {=} 1, \; m(\tilde{\chi}_1^\theta) {=} 108 \; GeV \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATLAS-CONF-2013-069<br>1310.6584<br>ATLAS-CONF-2013-058<br>1304.6310<br>ATLAS-CONF-2013-092                                                                                                                                                              |
| RPV                | $ \begin{array}{l} LFV \ pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} e + \mu \\ LFV \ pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} {\rightarrow} W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} {\rightarrow} ee \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} {\rightarrow} W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} {\rightarrow} \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \\ \tilde{g} {\rightarrow} qqq \\ \tilde{g} {\rightarrow} \tilde{t}_{1} t, \tilde{t}_{1} {\rightarrow} bs \end{array} $                                                                                                                                                                                                                              | $\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu  (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu  (\text{SS}) \end{array}$                                                    | 0-3 b<br>                                                                                                                               | Yes<br>Yes<br>Yes<br>Yes                                           | 4.6<br>4.6<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                                       | ₽ <sub>1</sub><br>₽ <sub>1</sub><br>₽ <sub>2</sub><br>₽ <sub>3</sub><br>₽ <sub>4</sub><br>X<br>X<br>₽<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.61<br>1.1 TeV<br>1.35 TeV<br>750 GeV<br>450 GeV<br>916 GeV<br>850 GeV                                                                                                          | TeV<br>$\lambda'_{511}=0.10, \lambda_{132}=0.05$<br>$\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$<br>$m(\tilde{q})=m(\tilde{g}), c\tau_{LSF}<1 \text{ mm}$<br>$m(\tilde{k}_{1}^{0})=0.2\times m(\tilde{k}_{1}^{+}), \lambda_{121}\neq 0$<br>$m(\tilde{k}_{1}^{0})=0.2\times m(\tilde{k}_{1}^{+}), \lambda_{133}\neq 0$<br>BR(t)=BR(b)=BR(c)=0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1212.1272<br>1212.1272<br>1404.2500<br>1405.5086<br>1405.5086<br>ATLAS-CONF-2013-091<br>1404.250                                                                                                                                                         |
| Other              | Scalar gluon pair, sgluon $\rightarrow q\bar{q}$<br>Scalar gluon pair, sgluon $\rightarrow t\bar{t}$<br>WIMP interaction (D5, Dirac $\chi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>2 e, µ (SS)<br>0                                                                                                                                                                                           | 4 jets<br>2 b<br>mono-jet                                                                                                               | -<br>Yes<br>Yes                                                    | 4.6<br>14.3<br>10.5                                                                                      | sgluon<br>sgluon<br>M* scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100-287 GeV<br>350-800 GeV<br>704 GeV                                                                                                                                            | incl. limit from 1110.2693 $m(\chi) {<} 80~{\rm GeV}, \mbox{ limit of} {<} 687~{\rm GeV} \mbox{ for D8}. \label{eq:generalized}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1210.4826<br>ATLAS-CONF-2013-051<br>ATLAS-CONF-2012-147                                                                                                                                                                                                  |
|                    | $\sqrt{s} = 7 \text{ TeV}$<br>full data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sqrt{s} = 8 \text{ TeV}$                                                                                                                                                                                      | $\sqrt{s} = 0$<br>full of                                                                                                               | 8 TeV<br>data                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>-1</sup> 1                                                                                                                                                               | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 243                                                                                                                                                                                                                                                      |

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\sqrt{s} = 7.8 \text{ TeV}$ 

#### ATLAS Exotics Searches\* - 95% CL Exclusion

Status: ICHEP 2014

#### ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$   $\sqrt{s} = 7, 8 \text{ TeV}$ 

|                  | Model                                                                                                                                                                                                                                                                                                                                                 | $\ell, \gamma$                                                                                                                                                                     | Jets                                                                                                                                      | E <sup>miss</sup><br>T                               | ∫£ dt[fb                                                                                         | -1] Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      | Reference                                                                                                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extra dimensions | ADD $G_{KK} + g/q$<br>ADD non-resonant $\ell\ell$<br>ADD QBH $\rightarrow \ell q$<br>ADD QBH<br>ADD BH high $\sum p_T$<br>RS1 $G_{KK} \rightarrow \ell\ell$<br>RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$<br>Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q$<br>Bulk RS $g_{KK} \rightarrow t\bar{t}$<br>$S^1/Z_2$ ED<br>UED | $\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2\mu (SS) \\ \ge 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu \\ 2 \gamma \end{array}$ | 1-2j<br>-<br>1 j<br>2 j<br>-<br>2 j / 1 J<br>4 b<br>≥ 1 b, ≥ 1 J/                                                                         | Yes<br>-<br>-<br>-<br>Yes<br>-<br>2j Yes<br>-<br>Yes | 4.7<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>4.7<br>20.3<br>19.5<br>14.3<br>5.0<br>4.8 | Mp       4.37 TeV         Ms       5.2 TeV         Mm       5.2 TeV         Mm       5.2 TeV         Mm       5.82 TeV         Mm       5.82 TeV         Mm       5.82 TeV         Mm       5.7 TeV         Mm       6.2 TeV         Mm       6.2 TeV         Mm       5.7 TeV         Mm       6.2 TeV         GKK mass       2.68 TeV         GKK mass       1.23 TeV         GKK mass       590-710 GeV         BKK mass       590-710 GeV         BKK mass       590-710 GeV         MKK = R <sup>-1</sup> 4.71 TeV         Compact, scale R <sup>-1</sup> 1.41 TeV | n = 2<br>n = 3  HLZ<br>n = 6<br>n = 6<br>$n = 6$ , $M_D = 1.5 \text{ TeV}$ , non-rot BH<br>$n = 6$ , $M_D = 1.5 \text{ TeV}$ , non-rot BH<br>$k/\overline{M}_{Pl} = 0.1$<br>$k/\overline{M}_{Pl} = 0.1$<br>$k/\overline{M}_{Pl} = 1.0$<br>BR = 0.925 | 1210.4491<br>ATLAS-CONF-2014-030<br>1311.2006<br>to be submitted to PRD<br>1308.4075<br>1405.4254<br>1405.4123<br>1208.2880<br>ATLAS-CONF-2014-039<br>ATLAS-CONF-2014-039<br>ATLAS-CONF-2014-005<br>ATLAS-CONF-2013-052<br>1209.2535<br>ATLAS-CONF-2012-072 |
| Gauge bosons     | $\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{EGM} W' \to WZ \to \ell\nu  \ell'\ell' \\ \operatorname{EGM} W' \to WZ \to qq\ell\ell \\ \operatorname{LRSM} W'_R \to t\overline{b} \\ \operatorname{LRSM} W'_R \to t\overline{b} \end{array}$       | 2 e,μ<br>2 τ<br>1 e,μ<br>3 e,μ<br>2 e,μ<br>1 e,μ<br>0 e,μ                                                                                                                          | -<br>-<br>2j/1J<br>2b,0-1j<br>≥1b,1J                                                                                                      | -<br>Yes<br>Yes<br>-<br>Yes<br>-                     | 20.3<br>19.5<br>20.3<br>20.3<br>20.3<br>14.3<br>20.3                                             | Z' mass         2.9 TeV           Z' mass         1.9 TeV           W' mass         3.28 TeV           W' mass         1.52 TeV           W' mass         1.59 TeV           W' mass         1.84 TeV           W' mass         1.77 TeV                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      | 1405.4123<br>ATLAS-CONF-2013-066<br>ATLAS-CONF-2014-017<br>1406.4456<br>ATLAS-CONF-2014-039<br>ATLAS-CONF-2013-050<br>to be submitted to EPJC                                                                                                               |
| C                | Cl qqqq<br>Cl qqll<br>Cl uutt                                                                                                                                                                                                                                                                                                                         | –<br>2 e,μ<br>2 e,μ (SS)                                                                                                                                                           | 2 j<br>                                                                                                                                   | -<br>j Yes                                           | 4.8<br>20.3<br>14.3                                                                              | Λ 7.6 TeV<br>Λ 3.3 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\eta = +1$<br><b>21.6 TeV</b> $\eta_{LL} = -1$<br> C  = 1                                                                                                                                                                                           | 1210.1718<br>ATLAS-CONF-2014-030<br>ATLAS-CONF-2013-051                                                                                                                                                                                                     |
| MQ               | EFT D5 operator (Dirac)<br>EFT D9 operator (Dirac)                                                                                                                                                                                                                                                                                                    | 0 e,μ<br>0 e,μ                                                                                                                                                                     | 1-2 j<br>1 J, ≤ 1 j                                                                                                                       | Yes<br>Yes                                           | 10.5<br>20.3                                                                                     | M. 731 GeV<br>M. 2.4 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at 90% CL for $m(\chi) < 80 \text{ GeV}$<br>at 90% CL for $m(\chi) < 100 \text{ GeV}$                                                                                                                                                                | ATLAS-CONF-2012-147<br>1309.4017                                                                                                                                                                                                                            |
| 70               | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                       | 2 e<br>2 μ<br>1 e, μ, 1 τ                                                                                                                                                          | ≥ 2 j<br>≥ 2 j<br>1 b, 1 j                                                                                                                |                                                      | 1.0<br>1.0<br>4.7                                                                                | LQ mass 660 GeV<br>LQ mass 685 GeV<br>LQ mass 534 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 1 \end{array}$                                                                                                                                                                                   | 1112.4828<br>1203.3172<br>1303.0526                                                                                                                                                                                                                         |
| Heavy<br>quarks  | Vector-like quark $TT \rightarrow Ht + X$<br>Vector-like quark $TT \rightarrow Wb + X$<br>Vector-like quark $TT \rightarrow Zt + X$<br>Vector-like quark $BB \rightarrow Zb + X$<br>Vector-like quark $BB \rightarrow Wt + X$                                                                                                                         | 1 e,μ<br>1 e,μ<br>2/≥3 e,μ<br>2/≥3 e,μ<br>2 e,μ (SS)                                                                                                                               | $\begin{array}{l} \geq 2 \ b, \geq 4 \\ \geq 1 \ b, \geq 3 \\ \geq 2/{\geq}1 \ b \\ \geq 2/{\geq}1 \ b \\ \geq 1 \ b, \geq 1 \end{array}$ | j Yes<br>j Yes<br>-<br>j Yes                         | 14.3<br>14.3<br>20.3<br>20.3<br>14.3                                                             | T mass     790 GeV       T mass     670 GeV       T mass     735 GeV       B mass     755 GeV       B mass     720 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T in (T,B) doublet<br>isospin singlet<br>T in (T,B) doublet<br>B in (B,Y) doublet<br>B in (T,B) doublet                                                                                                                                              | ATLAS-CONF-2013-018<br>ATLAS-CONF-2013-060<br>ATLAS-CONF-2014-036<br>ATLAS-CONF-2014-036<br>ATLAS-CONF-2014-036                                                                                                                                             |
| Excited          | Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $q^* \rightarrow qg$<br>Excited quark $b^* \rightarrow Wt$<br>Excited lepton $\ell^* \rightarrow \ell\gamma$                                                                                                                                                                                 | 1 γ<br>-<br>1 or 2 e,μ<br>2 e,μ, 1 γ                                                                                                                                               | 1 j<br>2 j<br>1 b, 2 j or 1<br>-                                                                                                          | -<br>j Yes<br>-                                      | 20.3<br>20.3<br>4.7<br>13.0                                                                      | q* mass         3.5 TeV           q* mass         4.09 TeV           b* mass         870 GeV           /* mass         2.2 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                          | only $u^*$ and $d^*$ , $\Lambda = m(q^*)$<br>only $u^*$ and $d^*$ , $\Lambda = m(q^*)$<br>left-handed coupling<br>$\Lambda = 2.2 \text{ TeV}$                                                                                                        | 1309.3230<br>to be submitted to PRD<br>1301.1583<br>1308.1364                                                                                                                                                                                               |
| Other            | LSTC $a_T \rightarrow W\gamma$<br>LRSM Majorana $\nu$<br>Type III Seesaw<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$<br>Multi-charged particles<br>Magnetic monopoles                                                                                                                                                                          | $1 e, \mu, 1 \gamma$<br>$2 e, \mu$<br>$2 e, \mu$<br>$2 e, \mu$ (SS)<br>-<br>-<br>-<br>-<br>-                                                                                       | -<br>2j<br>-<br>-<br>-<br>7 TeV                                                                                                           | Yes<br>-<br>-<br>-<br>-<br>-                         | 20.3<br>2.1<br>5.8<br>4.7<br>4.4<br>2.0<br>8 TeV                                                 | Permass         960 GeV           N <sup>0</sup> mass         1.5 TeV           N <sup>±</sup> mass         245 GeV           H <sup>±±</sup> mass         409 GeV           multi-charged particle mass         490 GeV           monopole mass         862 GeV           10 <sup>-1</sup> 1                                                                                                                                                                                                                                                                           | $m(W_R) = 2 \text{ TeV, no mixing}$ $ V_e =0.055,  V_{\mu} =0.063,  V_{\tau} =0$ DY production, BR( $H^{\pm\pm} \rightarrow \ell\ell$ )=1 DY production, $ g  = 4e$ DY production, $ g  = 1g_D$ 10 Masse scale [TeV]                                 | to be submitted to PLB<br>1203.5420<br>ATLAS-CONF-2013-019<br>1210.5070<br>1301.5272<br>1207.6411                                                                                                                                                           |

\*Only a selection of the available mass limits on new states or phenomena is shown.

#### LHC - future planning:

#### 2013 / 2014:

 ~20 months shut-down (installation of final safety systems for highest magnet currents to reach design-energy of 14 TeV)

2015 - 2022: - full energy (14 TeV) and luminosity (10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>) expect ~10 times more data than available today from ~2025 - 2035:

- upgraded LHC and detectors (hI-LHC; luminosity x 5))

expect ~100 times more data than available today

#### >~ 2035:

- Future Circular Collider (FCC)? 100 km circ., 100 TeV

LHC results