Stephan Günnemann

Rudolf Mößbauer Tenure Track

Technical University of Munich


Focus Group
Data Mining & Analytics

Short CV

Stephan Günnemann acquired his doctoral degree in 2012 at RWTH Aachen University in the field of computer science. From 2012 to 2015 he was an associate of Carnegie Mellon University, USA; initially as a postdoctoral fellow and later as a senior researcher. Prof. Günnemann has been a visiting researcher at Simon Fraser University, Canada, and a research scientist at the Research & Technology Center of Siemens AG. In 2015, Prof. Günnemann set up an Emmy Noether research group at TUM Department of Informatics. He has been a professor of data mining & analytics at TUM since 2016.


2015 Member of the Emmy Noether Program of the German Research Foundation (DFG)

2013 Recipient of a German Academic Exchange Service (DAAD) Research Fellowship

2013 Dissertation Award of the German Computer Science Society

2013 Borchers Badge for Doctoral Dissertation, RWTH Aachen University

2012 Recipient of a German Academic Exchange Service (DAAD) Research Fellowship

2011 Best Paper Award at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases

2009 Friedrich-Wilhelm Award, RWTH Aachen University

Research Interest

Stephan Günnemann conducts research in the area of data mining and machine learning. The focus of his work is on the design and analysis of robust and scalable data mining techniques with the goal of being able to support the analysis and understanding of the massive amounts of data collected by science and industry. Prof. Günnemann is particularly interested in studying the principles for analyzing complex data such as networks, graphs and temporal data, with applications including clustering and anomaly detection.

Selected Publications